MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT

Muhammad Manaqib, Ayu Kinasih Yuliawati, Dhea Urfina Zulkifli
{"title":"MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT","authors":"Muhammad Manaqib, Ayu Kinasih Yuliawati, Dhea Urfina Zulkifli","doi":"10.14710/jfma.v6i2.20091","DOIUrl":null,"url":null,"abstract":"This study developed a model for the spread of measles based on the SEIR model by adding the factors of using the first dose of vaccination, the second dose of vaccination, and treatment. Making this model begins with making a compartment diagram of the spread of the disease, which consists of seven subpopulations, namely susceptible subpopulations, subpopulations that have received the first dose of vaccination, subpopulations that have received the second dose vaccination, exposed subpopulations, infected subpopulations, subpopulations that have received treatment, and subpopulations healed. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R_0) are obtained. Analysis of the stability of the disease-for equilibrium point was locally asymptotically stable when (R_0)<1. The backward bifurcation analysis occurs when (R_C) is present and R_C<R_0. Numerical simulations of disease-free and endemic equilibrium points are carried out to provide an overview of the results analyzed with parameter values from several sources. The results of the numerical simulation are in line with the analysis carried out. From the model analysis, the disease will disappear more quickly when the level of vaccine used and individuals who carry out treatment are enlarged.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v6i2.20091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a model for the spread of measles based on the SEIR model by adding the factors of using the first dose of vaccination, the second dose of vaccination, and treatment. Making this model begins with making a compartment diagram of the spread of the disease, which consists of seven subpopulations, namely susceptible subpopulations, subpopulations that have received the first dose of vaccination, subpopulations that have received the second dose vaccination, exposed subpopulations, infected subpopulations, subpopulations that have received treatment, and subpopulations healed. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R_0) are obtained. Analysis of the stability of the disease-for equilibrium point was locally asymptotically stable when (R_0)<1. The backward bifurcation analysis occurs when (R_C) is present and R_C
使用两剂疫苗接种和治疗的麻疹疾病传播数学模型
本研究在 SEIR 模型的基础上,通过添加使用第一剂疫苗、第二剂疫苗和治疗等因素,建立了麻疹传播模型。制作该模型首先要制作疾病传播的分区图,其中包括七个亚群,即易感亚群、接种第一剂疫苗的亚群、接种第二剂疫苗的亚群、暴露亚群、感染亚群、接受治疗的亚群和痊愈亚群。模型形成后,可得到无病平衡点、流行平衡点和基本繁殖数(R_0)。分析发现,当(R_0)<1 时,无病平衡点局部渐近稳定;当(R_C)出现且 R_C
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信