Brain Tumor Segmentation Based on The Learning Statistical Texture

Yufeng Guo, Feiba Chang, Xiaoyu Chen, Fengjun Sun, Zihong Wang
{"title":"Brain Tumor Segmentation Based on The Learning Statistical Texture","authors":"Yufeng Guo, Feiba Chang, Xiaoyu Chen, Fengjun Sun, Zihong Wang","doi":"10.37965/jait.2023.0442","DOIUrl":null,"url":null,"abstract":"Achieving accurate segmentation of brain tumors in Magnetic Resonance Imaging (MRI) is important for clinical diagnosis and accurate treatment, and the efficient extraction and analysis of MRI multimodal feature information is the key to achieving accurate segmentation. In this paper, we propose a multimodal information fusion method for brain tumor segmentation, aimed at achieving full utilization of multimodal information for accurate segmentation in MRI. In our method, the semantic information processing module (SIPM) and Multimodal Feature Reasoning Module (MFRM) are included: (1) SIPM is introduced to achieve free multiscale feature enhancement and extraction; (2) MFRM is constructed to process both the backbone network feature information layer and semantic feature information layer. Using extensive experiments, the proposed method is validated. The experimental results based on BraTS2018 and BraTS2019 datasets show that the method has unique advantages over existing brain tumor segmentation methods.","PeriodicalId":135863,"journal":{"name":"Journal of Artificial Intelligence and Technology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37965/jait.2023.0442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving accurate segmentation of brain tumors in Magnetic Resonance Imaging (MRI) is important for clinical diagnosis and accurate treatment, and the efficient extraction and analysis of MRI multimodal feature information is the key to achieving accurate segmentation. In this paper, we propose a multimodal information fusion method for brain tumor segmentation, aimed at achieving full utilization of multimodal information for accurate segmentation in MRI. In our method, the semantic information processing module (SIPM) and Multimodal Feature Reasoning Module (MFRM) are included: (1) SIPM is introduced to achieve free multiscale feature enhancement and extraction; (2) MFRM is constructed to process both the backbone network feature information layer and semantic feature information layer. Using extensive experiments, the proposed method is validated. The experimental results based on BraTS2018 and BraTS2019 datasets show that the method has unique advantages over existing brain tumor segmentation methods.
基于学习统计纹理的脑肿瘤分割
在磁共振成像(MRI)中实现脑肿瘤的精确分割对临床诊断和准确治疗非常重要,而有效提取和分析 MRI 多模态特征信息是实现精确分割的关键。本文提出了一种用于脑肿瘤分割的多模态信息融合方法,旨在充分利用多模态信息实现 MRI 的精确分割。我们的方法包括语义信息处理模块(SIPM)和多模态特征推理模块(MFRM):(1) SIPM 用于实现自由的多尺度特征增强和提取;(2) MFRM 用于处理骨干网络特征信息层和语义特征信息层。通过大量实验,验证了所提出的方法。基于 BraTS2018 和 BraTS2019 数据集的实验结果表明,与现有的脑肿瘤分割方法相比,该方法具有独特的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信