Deep hybrid model for attack detection in IoT-fog architecture with improved feature set and optimal training

IF 0.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
N. Pokale, Pooja Sharma, Deepak T. Mane
{"title":"Deep hybrid model for attack detection in IoT-fog architecture with improved feature set and optimal training","authors":"N. Pokale, Pooja Sharma, Deepak T. Mane","doi":"10.3233/web-230187","DOIUrl":null,"url":null,"abstract":"IoT-Fog computing provides a wide range of services for end-based IoT systems. End IoT devices interface with cloud nodes and fog nodes to manage client tasks. Critical attacks like DDoS and other security risks are more likely to compromise IoT end devices while they are collecting data between the fog and the cloud layer. It’s important to find these network vulnerabilities early. By extracting features and placing the danger in the network, DL is crucial in predicting end-user behavior. However, deep learning cannot be carried out on Internet of Things devices because to their constrained calculation and storage capabilities. In this research, we suggest a three-stage Deep Hybrid Detection Model for Attack Detection in IoT-Fog Architecture. Improved Z-score normalization-based data preparation will be carried out in the initial step. On the basis of preprocessed data, features like IG, raw data, entropy, and enhanced MI are extracted in the second step. The collected characteristics are used as input to hybrid classifiers dubbed optimized Deep Maxout and Deep Belief Network (DBN) in the third step of the process to classify the assaults based on the input dataset. A hybrid optimization model called the BMUJFO (Blue Monkey Updated Jellyfish Optimization) technique is presented for the best Deep Maxout training. Additionally, the suggested model produced higher accuracy, precision, sensitivity, and specificity results, with values of 95.26 percent, 94.84%, 96.28%, and 97.84%, respectively.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":"111 5","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

IoT-Fog computing provides a wide range of services for end-based IoT systems. End IoT devices interface with cloud nodes and fog nodes to manage client tasks. Critical attacks like DDoS and other security risks are more likely to compromise IoT end devices while they are collecting data between the fog and the cloud layer. It’s important to find these network vulnerabilities early. By extracting features and placing the danger in the network, DL is crucial in predicting end-user behavior. However, deep learning cannot be carried out on Internet of Things devices because to their constrained calculation and storage capabilities. In this research, we suggest a three-stage Deep Hybrid Detection Model for Attack Detection in IoT-Fog Architecture. Improved Z-score normalization-based data preparation will be carried out in the initial step. On the basis of preprocessed data, features like IG, raw data, entropy, and enhanced MI are extracted in the second step. The collected characteristics are used as input to hybrid classifiers dubbed optimized Deep Maxout and Deep Belief Network (DBN) in the third step of the process to classify the assaults based on the input dataset. A hybrid optimization model called the BMUJFO (Blue Monkey Updated Jellyfish Optimization) technique is presented for the best Deep Maxout training. Additionally, the suggested model produced higher accuracy, precision, sensitivity, and specificity results, with values of 95.26 percent, 94.84%, 96.28%, and 97.84%, respectively.
利用改进的特征集和优化的训练,在物联网-雾架构中建立深度混合模型进行攻击检测
物联网-雾计算为基于终端的物联网系统提供广泛的服务。终端物联网设备与云节点和雾节点对接,以管理客户端任务。当物联网终端设备在雾和云层之间收集数据时,DDoS 等关键攻击和其他安全风险更有可能危及这些设备。及早发现这些网络漏洞非常重要。通过提取特征并将危险置于网络中,DL 对预测终端用户行为至关重要。然而,由于计算和存储能力有限,深度学习无法在物联网设备上进行。在这项研究中,我们提出了一种用于物联网-雾架构中攻击检测的三阶段深度混合检测模型。第一步将进行基于 Z 分数归一化的改进数据准备。在预处理数据的基础上,第二步将提取 IG、原始数据、熵和增强 MI 等特征。在第三步中,收集到的特征将被用作混合分类器的输入,这些分类器被称为优化的深度 Maxout 和深度信念网络 (DBN),以便根据输入数据集对攻击进行分类。为了获得最佳的 Deep Maxout 训练效果,提出了一种名为 BMUJFO(Blue Monkey Updated Jellyfish Optimization)技术的混合优化模型。此外,建议的模型产生了更高的准确度、精确度、灵敏度和特异性结果,数值分别为 95.26%、94.84%、96.28% 和 97.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Web Intelligence
Web Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
0.90
自引率
0.00%
发文量
35
期刊介绍: Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信