Disparate Redox Potentials in Mixed Isomer Electrolytes Reduce Voltage Efficiency of Energy Dense Flow Batteries

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY
Batteries Pub Date : 2023-11-27 DOI:10.3390/batteries9120573
Casey M. Davis, Scott E. Waters, Brian H. Robb, Jonathan R. Thurston, David Reber, Michael P. Marshak
{"title":"Disparate Redox Potentials in Mixed Isomer Electrolytes Reduce Voltage Efficiency of Energy Dense Flow Batteries","authors":"Casey M. Davis, Scott E. Waters, Brian H. Robb, Jonathan R. Thurston, David Reber, Michael P. Marshak","doi":"10.3390/batteries9120573","DOIUrl":null,"url":null,"abstract":"Electrolytes containing multiple redox couples are promising for improving the energy density of flow batteries. Here, two chelated chromium complexes that are structural isomers are characterized and combined to generate electrolytes containing up to 2 M of active species, corresponding to 53.6 Ah L−1. The mixed isomer approach enables a significantly higher active material content than the individual materials would allow, affording energy dense cells with Coulombic efficiencies of ≥99.6% at 100 mA cm−2 and an open circuit voltage of 1.65 V at 50% state-of-charge. This high concentration, however, comes with a caveat; at a given concentration, an equimolar mixed electrolyte leads to lower voltage efficiency compared to using the individual isomers, while Coulombic efficiency remains constant. Our work demonstrates that exploiting structural isomerism is an efficient approach to improve capacity, but active materials must be selected carefully in mixed systems as differences in operating potentials negatively affect energy efficiency.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"20 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries9120573","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytes containing multiple redox couples are promising for improving the energy density of flow batteries. Here, two chelated chromium complexes that are structural isomers are characterized and combined to generate electrolytes containing up to 2 M of active species, corresponding to 53.6 Ah L−1. The mixed isomer approach enables a significantly higher active material content than the individual materials would allow, affording energy dense cells with Coulombic efficiencies of ≥99.6% at 100 mA cm−2 and an open circuit voltage of 1.65 V at 50% state-of-charge. This high concentration, however, comes with a caveat; at a given concentration, an equimolar mixed electrolyte leads to lower voltage efficiency compared to using the individual isomers, while Coulombic efficiency remains constant. Our work demonstrates that exploiting structural isomerism is an efficient approach to improve capacity, but active materials must be selected carefully in mixed systems as differences in operating potentials negatively affect energy efficiency.
混合异构体电解质中不同的氧化还原电位降低了能量密度流动电池的电压效率
含有多种氧化还原偶的电解质有望提高液流电池的能量密度。本文对结构异构体的两种螯合铬络合物进行了表征,并将其组合在一起生成了含有高达 2 M 活性物质的电解质,相当于 53.6 Ah L-1。这种混合异构体方法使活性物质的含量大大高于单个材料,在 100 mA cm-2 时可产生库仑效率≥99.6% 的高能量密度电池,在 50% 电量状态下可产生 1.65 V 的开路电压。不过,这种高浓度也有一个注意事项:在给定浓度下,等摩尔混合电解质的电压效率比使用单个异构体低,而库仑效率保持不变。我们的工作表明,利用结构异构是提高容量的有效方法,但在混合体系中必须谨慎选择活性材料,因为工作电位的差异会对能量效率产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信