{"title":"Wavefront reconstruction for double-grating Ronchi lateral shearing interferometry with nonlinear optimization","authors":"Runzhou Shi, Huiwen Liu, Yuqi Shao, Jian Bai","doi":"10.1117/12.2688489","DOIUrl":null,"url":null,"abstract":"Traditional phase retrieval methods for Ronchi lateral shearing interferometry eliminate the impact of high diffraction orders by increasing the number of phase-shifting interferograms, however, this introduces additional error in the phase-shifting process. We propose an optimization method combining a 2-frame phase-shifting algorithm to achieve accurate wavefront reconstruction. A numerical model matching the physical model is constructed and the cross-iterative gradient descent method is used to optimize the initial results obtained by the two-step phase-shifting method. The accuracy and robustness of the method are verified by simulations and experiments. The proposed method has the advantages of achieving high-precision wavefront reconstruction and correcting the phase-shifting errors, and it significantly simplifies the process of phase shift.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"1 1","pages":"127650S - 127650S-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2688489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional phase retrieval methods for Ronchi lateral shearing interferometry eliminate the impact of high diffraction orders by increasing the number of phase-shifting interferograms, however, this introduces additional error in the phase-shifting process. We propose an optimization method combining a 2-frame phase-shifting algorithm to achieve accurate wavefront reconstruction. A numerical model matching the physical model is constructed and the cross-iterative gradient descent method is used to optimize the initial results obtained by the two-step phase-shifting method. The accuracy and robustness of the method are verified by simulations and experiments. The proposed method has the advantages of achieving high-precision wavefront reconstruction and correcting the phase-shifting errors, and it significantly simplifies the process of phase shift.