Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment

IF 0.7 Q2 MATHEMATICS
B. Alshammari, D. Mashat, F. Mallawi
{"title":"Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment","authors":"B. Alshammari, D. Mashat, F. Mallawi","doi":"10.28924/2291-8639-21-2023-127","DOIUrl":null,"url":null,"abstract":"We propose a mathematical model for the vibrio cholerae spread under the influence of a seasonal environment with two routes of infection. We proved the existence of a unique bounded positive solution, and that the system admits a global attractor set. The basic reproduction number R0 was calculated for both cases, the fixed and seasonal environment which permits to characterise both, the extinction and the persistence of the disease. We proved that the phage-free equilibrium point is globally asymptotically stable if R0≤1, while the disease will be persist if R0>1. Finally, extensive numerical simulations are given to confirm the theoretical findings.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"50 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a mathematical model for the vibrio cholerae spread under the influence of a seasonal environment with two routes of infection. We proved the existence of a unique bounded positive solution, and that the system admits a global attractor set. The basic reproduction number R0 was calculated for both cases, the fixed and seasonal environment which permits to characterise both, the extinction and the persistence of the disease. We proved that the phage-free equilibrium point is globally asymptotically stable if R0≤1, while the disease will be persist if R0>1. Finally, extensive numerical simulations are given to confirm the theoretical findings.
季节性环境下霍乱动态的数学和数值研究
我们提出了一个在季节性环境影响下霍乱弧菌传播的数学模型,该模型有两种感染途径。我们证明了存在一个唯一的有界正解,并且该系统存在一个全局吸引子集。我们计算了固定环境和季节性环境两种情况下的基本繁殖数 R0,从而确定了疾病的消亡和持续特征。我们证明,如果 R0≤1 ,无噬菌体平衡点在全局上是渐近稳定的,而如果 R0>1 ,疾病将持续存在。最后,我们给出了大量的数值模拟来证实理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信