{"title":"A Cross-Domain Recommender System for Literary Books Using Multi-Head Self-Attention Interaction and Knowledge Transfer Learning","authors":"Yuan Cui, Yuexing Duan, Yueqin Zhang, Li Pan","doi":"10.4018/ijdwm.334122","DOIUrl":null,"url":null,"abstract":"Existing book recommendation methods often overlook the rich information contained in the comment text, which can limit their effectiveness. Therefore, a cross-domain recommender system for literary books that leverages multi-head self-attention interaction and knowledge transfer learning is proposed. Firstly, the BERT model is employed to obtain word vectors, and CNN is used to extract user and project features. Then, higher-level features are captured through the fusion of multi-head self-attention and addition pooling. Finally, knowledge transfer learning is introduced to conduct joint modeling between different domains by simultaneously extracting domain-specific features and shared features between domains. On the Amazon dataset, the proposed model achieved MAE and MSE of 0.801 and 1.058 in the “movie-book” recommendation task and 0.787 and 0.805 in the “music-book” recommendation task, respectively. This performance is significantly superior to other advanced recommendation models. Moreover, the proposed model also has good universality on the Chinese dataset.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.334122","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Existing book recommendation methods often overlook the rich information contained in the comment text, which can limit their effectiveness. Therefore, a cross-domain recommender system for literary books that leverages multi-head self-attention interaction and knowledge transfer learning is proposed. Firstly, the BERT model is employed to obtain word vectors, and CNN is used to extract user and project features. Then, higher-level features are captured through the fusion of multi-head self-attention and addition pooling. Finally, knowledge transfer learning is introduced to conduct joint modeling between different domains by simultaneously extracting domain-specific features and shared features between domains. On the Amazon dataset, the proposed model achieved MAE and MSE of 0.801 and 1.058 in the “movie-book” recommendation task and 0.787 and 0.805 in the “music-book” recommendation task, respectively. This performance is significantly superior to other advanced recommendation models. Moreover, the proposed model also has good universality on the Chinese dataset.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving