Predicting Green Supply Chain Impact With SNN-Stacking Model in Digital Transformation Context

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Te Li, Praveen Kumar Donta
{"title":"Predicting Green Supply Chain Impact With SNN-Stacking Model in Digital Transformation Context","authors":"Te Li, Praveen Kumar Donta","doi":"10.4018/joeuc.334109","DOIUrl":null,"url":null,"abstract":"Green supply chain management is crucial for sustainable enterprises. Achieving it hinges on creating a greener supply chain through AI-driven data analysis. This enables precise market alignment, optimized management, and sustainable development. This study explores the link between digital transformation and green supply chain management. It leverages AI, specifically the XGBoost algorithm, to gauge sample contributions to market demand. It extracts multi-dimensional features in green supply chain management using NSCNN and CSCNN, combining them with the Stacking ensemble learning algorithm to form a new predictive model. This model, SNN-Stacking ensemble learning, outperforms traditional models, aiding resource planning, enhancing supply chain transparency, and promoting sustainable development by reducing environmental risks and resource waste. This research underscores the potential of digital technology in green supply chain management.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"42 11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.334109","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Green supply chain management is crucial for sustainable enterprises. Achieving it hinges on creating a greener supply chain through AI-driven data analysis. This enables precise market alignment, optimized management, and sustainable development. This study explores the link between digital transformation and green supply chain management. It leverages AI, specifically the XGBoost algorithm, to gauge sample contributions to market demand. It extracts multi-dimensional features in green supply chain management using NSCNN and CSCNN, combining them with the Stacking ensemble learning algorithm to form a new predictive model. This model, SNN-Stacking ensemble learning, outperforms traditional models, aiding resource planning, enhancing supply chain transparency, and promoting sustainable development by reducing environmental risks and resource waste. This research underscores the potential of digital technology in green supply chain management.
利用 SNN 叠加模型预测数字化转型背景下的绿色供应链影响
绿色供应链管理对于可持续发展的企业至关重要。实现这一目标的关键在于通过人工智能驱动的数据分析来创建更环保的供应链。这可以实现精确的市场调整、优化管理和可持续发展。本研究探讨了数字化转型与绿色供应链管理之间的联系。它利用人工智能,特别是 XGBoost 算法,来衡量样本对市场需求的贡献。它利用 NSCNN 和 CSCNN 提取绿色供应链管理中的多维特征,并将其与 Stacking 集合学习算法相结合,形成一个新的预测模型。这种名为 "SNN-Stacking 集合学习 "的模型优于传统模型,有助于资源规划、提高供应链透明度,并通过减少环境风险和资源浪费促进可持续发展。这项研究凸显了数字技术在绿色供应链管理中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信