Gabriele Cicioni, A. De Angelis, F. Janeiro, Pedro M. Ramos, P. Carbone
{"title":"Battery Impedance Spectroscopy Embedded Measurement System","authors":"Gabriele Cicioni, A. De Angelis, F. Janeiro, Pedro M. Ramos, P. Carbone","doi":"10.3390/batteries9120577","DOIUrl":null,"url":null,"abstract":"The evolution of rechargeable battery characteristics have led to their use in almost every device in our everyday life. This importance has also increased the relevance of estimating the remaining battery charge (state of charge, SOC) and their health (state of health, SOH). One of the methods for the estimation of these parameters is based on the impedance spectroscopy obtained from the battery output impedance measured at multiple frequencies. This paper proposes an embedded measurement system capable of measuring the battery output impedance while in operation (either charging or supplying power to the intended device). The developed system generates a small amplitude stimulus that is added to the battery current. The system then measures the battery voltage and current to estimate the impedance at the stimulus frequencies. Three batteries were measured at different SOC levels, demonstrating the system principle of operation. Complementarily, a battery impedance equivalent circuit was used, together with genetic algorithms, to estimate the circuit parameters and assess their dependence on the battery SOC.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"49 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries9120577","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of rechargeable battery characteristics have led to their use in almost every device in our everyday life. This importance has also increased the relevance of estimating the remaining battery charge (state of charge, SOC) and their health (state of health, SOH). One of the methods for the estimation of these parameters is based on the impedance spectroscopy obtained from the battery output impedance measured at multiple frequencies. This paper proposes an embedded measurement system capable of measuring the battery output impedance while in operation (either charging or supplying power to the intended device). The developed system generates a small amplitude stimulus that is added to the battery current. The system then measures the battery voltage and current to estimate the impedance at the stimulus frequencies. Three batteries were measured at different SOC levels, demonstrating the system principle of operation. Complementarily, a battery impedance equivalent circuit was used, together with genetic algorithms, to estimate the circuit parameters and assess their dependence on the battery SOC.