Silicon Negative Electrodes—What Can Be Achieved for Commercial Cell Energy Densities

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY
Batteries Pub Date : 2023-11-28 DOI:10.3390/batteries9120576
William Yourey
{"title":"Silicon Negative Electrodes—What Can Be Achieved for Commercial Cell Energy Densities","authors":"William Yourey","doi":"10.3390/batteries9120576","DOIUrl":null,"url":null,"abstract":"Historically, lithium cobalt oxide and graphite have been the positive and negative electrode active materials of choice for commercial lithium-ion cells. It has only been over the past ~15 years in which alternate positive electrode materials have been used. As new positive and negative active materials, such as NMC811 and silicon-based electrodes, are being developed, it is crucial to evaluate the potential of these materials at a stack or cell level to fully understand the possible increases in energy density which can be achieved. Comparisons were made between electrode stack volumetric energy densities for designs containing either LCO or NMC811 positive electrode and silicon-graphite negative electrodes, where the weight percentages of silicon were evaluated between zero and ninety percent. Positive electrode areal loadings were evaluated between 2.00 and 5.00 mAh cm−2. NMC811 at 200 mAh g−1 has the ability to increase stack energy density between 11% and 20% over LCO depending on percentage silicon and areal loading. At a stack level, the percentage of silicon added results in large increases in energy density but delivers a diminishing return, with the greatest increase observed as the percentage of silicon is increased from zero percent to approximately 25–30%.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"247 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries9120576","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Historically, lithium cobalt oxide and graphite have been the positive and negative electrode active materials of choice for commercial lithium-ion cells. It has only been over the past ~15 years in which alternate positive electrode materials have been used. As new positive and negative active materials, such as NMC811 and silicon-based electrodes, are being developed, it is crucial to evaluate the potential of these materials at a stack or cell level to fully understand the possible increases in energy density which can be achieved. Comparisons were made between electrode stack volumetric energy densities for designs containing either LCO or NMC811 positive electrode and silicon-graphite negative electrodes, where the weight percentages of silicon were evaluated between zero and ninety percent. Positive electrode areal loadings were evaluated between 2.00 and 5.00 mAh cm−2. NMC811 at 200 mAh g−1 has the ability to increase stack energy density between 11% and 20% over LCO depending on percentage silicon and areal loading. At a stack level, the percentage of silicon added results in large increases in energy density but delivers a diminishing return, with the greatest increase observed as the percentage of silicon is increased from zero percent to approximately 25–30%.
硅负极--商用电池能量密度可达到多少
一直以来,氧化钴锂和石墨都是商用锂离子电池的正负极活性材料。只是在过去的大约 15 年中,才开始使用其他正极材料。随着新型正负极活性材料(如 NMC811 和硅基电极)的不断开发,评估这些材料在电池堆或电池单元层面的潜力至关重要,这样才能充分了解可能实现的能量密度提升。我们对含有 LCO 或 NMC811 正极和硅石墨负极的电极堆体积能量密度进行了比较,其中硅的重量百分比在零到百分之九十之间。正电极面积负荷在 2.00 至 5.00 mAh cm-2 之间。与 LCO 相比,200 mAh g-1 的 NMC811 能够将堆栈能量密度提高 11% 到 20%,具体取决于硅的百分比和面积负载。在堆栈层面上,硅的添加比例会导致能量密度的大幅增加,但带来的回报也会递减,当硅的比例从零增加到大约 25-30% 时,观察到的增幅最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信