IoT intrusion detection system using ensemble classifier and hyperparameter optimization using tuna search algorithm

P. Vijayan, S. Sundar
{"title":"IoT intrusion detection system using ensemble classifier and hyperparameter optimization using tuna search algorithm","authors":"P. Vijayan, S. Sundar","doi":"10.32629/jai.v7i2.962","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is a dynamic and delightful research field in this emerging technology. It can be globally connected with many IoT devices and exchange a large amount of data. However, the threats also developed and misguided the entire network’s behaviour. This article proposes an Intrusion Detection System (IDS) using the proposed ensemble classifier along with the Tuna Swarm Optimization (TSO) to fine-tune the hyperparameters and help to enhance the detection accuracy of attacks that take place in IoT environment. Here, the publicly available message queue telemetry transport (MQTT) network dataset is used to classify the given data into the following categories: SlowlTe, malformed, brute force, flood, DoS, and legitimate. Initially, the dataset is pre-processed to remove possible outliers, then data balancing is performed using the Synthetic Minority Oversampling Technique (SMOTE) technique and features are extracted with the help of Recursive Feature Elimination (RFE). Finally, ensemble classifier along with the optimized parameters using TSO helps in detecting the attacks in IoT attacks. The proposed TSO-ensemble classifier achieved a classification accuracy of 99.12%. In contrast, the classification accuracy of the existing Improved Vulture Starvation-based African Vultures Optimization (IVS-AVOA) and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) have achieved a classification accuracy of 96.61% and 98.94% respectively.","PeriodicalId":307060,"journal":{"name":"Journal of Autonomous Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i2.962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) is a dynamic and delightful research field in this emerging technology. It can be globally connected with many IoT devices and exchange a large amount of data. However, the threats also developed and misguided the entire network’s behaviour. This article proposes an Intrusion Detection System (IDS) using the proposed ensemble classifier along with the Tuna Swarm Optimization (TSO) to fine-tune the hyperparameters and help to enhance the detection accuracy of attacks that take place in IoT environment. Here, the publicly available message queue telemetry transport (MQTT) network dataset is used to classify the given data into the following categories: SlowlTe, malformed, brute force, flood, DoS, and legitimate. Initially, the dataset is pre-processed to remove possible outliers, then data balancing is performed using the Synthetic Minority Oversampling Technique (SMOTE) technique and features are extracted with the help of Recursive Feature Elimination (RFE). Finally, ensemble classifier along with the optimized parameters using TSO helps in detecting the attacks in IoT attacks. The proposed TSO-ensemble classifier achieved a classification accuracy of 99.12%. In contrast, the classification accuracy of the existing Improved Vulture Starvation-based African Vultures Optimization (IVS-AVOA) and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) have achieved a classification accuracy of 96.61% and 98.94% respectively.
使用集合分类器和金枪鱼搜索算法优化超参数的物联网入侵检测系统
物联网(IoT)是这一新兴技术中充满活力和令人愉悦的研究领域。它可以在全球范围内连接许多物联网设备,并交换大量数据。然而,威胁也在发展,并误导着整个网络的行为。本文提出了一种入侵检测系统(IDS),利用提议的集合分类器和金枪鱼群优化(TSO)来微调超参数,帮助提高对物联网环境中发生的攻击的检测精度。在这里,公开可用的消息队列遥测传输(MQTT)网络数据集被用来将给定数据分为以下几类:SlowlTe、畸形、暴力、洪水、DoS 和合法。首先,对数据集进行预处理以去除可能的异常值,然后使用合成少数群体过度采样技术(SMOTE)进行数据平衡,并借助递归特征消除技术(RFE)提取特征。最后,使用 TSO 优化参数的集合分类器有助于检测物联网攻击中的攻击。所提出的 TSO 集合分类器的分类准确率达到了 99.12%。相比之下,现有的基于非洲秃鹫饥饿的改进型秃鹫优化(IVS-AVOA)和卷积神经网络长短期记忆(CNN-LSTM)的分类准确率分别为 96.61% 和 98.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信