Implementation of the K-Nearest Neighbor Algorithm to Predict Air Pollution

Claudyana Gabrillia Evitania
{"title":"Implementation of the K-Nearest Neighbor Algorithm to Predict Air Pollution","authors":"Claudyana Gabrillia Evitania","doi":"10.58777/its.v1i1.123","DOIUrl":null,"url":null,"abstract":"Air pollution is a serious issue that impacts air quality and human health. In this study, the K-Nearest Neighbor (KNN) algorithm is applied using Rapidminer software to predict air pollution levels. The research aims to predict air pollution levels based on various air quality parameters such as particulates, PM10, PM2.5, CO, NO2, SO2, and O3. By implementing the K-Nearest Neighbor algorithm in Rapidminer, the predicted values for air pollution data resulted in an accuracy of 93.94%. This study concludes that employing the K-Nearest Neighbor algorithm using Rapidminer software can be an effective method for predicting air pollution levels. With a strong accuracy rate of 93.94%, this can have a positive impact on both human health and the environment. The predictive model developed can aid decision-making and enhance awareness among the public regarding the importance of maintaining air quality management.","PeriodicalId":176258,"journal":{"name":"Information Technology and Systems","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58777/its.v1i1.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution is a serious issue that impacts air quality and human health. In this study, the K-Nearest Neighbor (KNN) algorithm is applied using Rapidminer software to predict air pollution levels. The research aims to predict air pollution levels based on various air quality parameters such as particulates, PM10, PM2.5, CO, NO2, SO2, and O3. By implementing the K-Nearest Neighbor algorithm in Rapidminer, the predicted values for air pollution data resulted in an accuracy of 93.94%. This study concludes that employing the K-Nearest Neighbor algorithm using Rapidminer software can be an effective method for predicting air pollution levels. With a strong accuracy rate of 93.94%, this can have a positive impact on both human health and the environment. The predictive model developed can aid decision-making and enhance awareness among the public regarding the importance of maintaining air quality management.
采用 K 近邻算法预测空气污染
空气污染是影响空气质量和人类健康的严重问题。本研究使用 Rapidminer 软件,采用 K-Nearest Neighbor (KNN) 算法预测空气污染水平。研究旨在根据颗粒物、PM10、PM2.5、CO、NO2、SO2 和 O3 等各种空气质量参数预测空气污染水平。通过在 Rapidminer 中使用 K-Nearest Neighbor 算法,空气污染数据预测值的准确率达到 93.94%。本研究得出结论,使用 Rapidminer 软件的 K-近邻算法是预测空气污染水平的有效方法。其准确率高达 93.94%,可对人类健康和环境产生积极影响。所开发的预测模型可帮助决策,提高公众对维护空气质量管理重要性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信