{"title":"Factors in Learning Dynamics Influencing Relative Strengths of Strategies in Poker Simulation","authors":"Aaron Foote, Maryam Gooyabadi, Nikhil Addleman","doi":"10.3390/g14060073","DOIUrl":null,"url":null,"abstract":"Poker is a game of skill, much like chess or go, but distinct as an incomplete information game. Substantial work has been done to understand human play in poker, as well as the optimal strategies in poker. Evolutionary game theory provides another avenue to study poker by considering overarching strategies, namely rational and random play. In this work, a population of poker playing agents is instantiated to play the preflop portion of Texas Hold’em poker, with learning and strategy revision occurring over the course of the simulation. This paper aims to investigate the influence of learning dynamics on dominant strategies in poker, an area that has yet to be investigated. Our findings show that rational play emerges as the dominant strategy when loss aversion is included in the learning model, not when winning and magnitude of win are of the only considerations. The implications of our findings extend to the modeling of sub-optimal human poker play and the development of optimal poker agents.","PeriodicalId":35065,"journal":{"name":"Games","volume":"320 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14060073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Poker is a game of skill, much like chess or go, but distinct as an incomplete information game. Substantial work has been done to understand human play in poker, as well as the optimal strategies in poker. Evolutionary game theory provides another avenue to study poker by considering overarching strategies, namely rational and random play. In this work, a population of poker playing agents is instantiated to play the preflop portion of Texas Hold’em poker, with learning and strategy revision occurring over the course of the simulation. This paper aims to investigate the influence of learning dynamics on dominant strategies in poker, an area that has yet to be investigated. Our findings show that rational play emerges as the dominant strategy when loss aversion is included in the learning model, not when winning and magnitude of win are of the only considerations. The implications of our findings extend to the modeling of sub-optimal human poker play and the development of optimal poker agents.
GamesDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍:
Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.