The Role of Climate Change in the Proliferation of Freshwater Harmful Algal Blooms in Inland Waterbodies of the United States

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Y. Wiley, Renee A. McPherson
{"title":"The Role of Climate Change in the Proliferation of Freshwater Harmful Algal Blooms in Inland Waterbodies of the United States","authors":"D. Y. Wiley, Renee A. McPherson","doi":"10.1175/ei-d-23-0008.1","DOIUrl":null,"url":null,"abstract":"Harmful algae and cyanobacteria blooms are increasing in frequency and intensity in freshwater systems due to anthropogenic impacts such as nutrient loading in watersheds and engineered alterations of natural waterways. There are multiple physical factors that affect the conditions in a freshwater system that contribute to optimal habitats for harmful algae and toxin-producing cyanobacteria. A growing body of research shows that climate change stressors also are impacting waterbody conditions that favor harmful algae and cyanobacteria species over other phytoplankton. The overgrowth of these organisms, or a “bloom,” increases the opportunity for exposure to toxins by humans, companion animals, livestock, and wildlife. As waters warm and precipitation patterns change over time, exposure to these blooms is projected to increase. Hence, it is important that states and tribes develop monitoring and reporting strategies as well as align governmental policies to protect their citizens and ecosystems within their jurisdiction. Currently, the policies and approaches taken to monitor and report on harmful algae and cyanobacteria blooms vary widely among states, and it is undetermined if any tribes have specific policies on harmful algae blooms. This paper synthesizes research on algal blooms in inland freshwater systems of the United States. This review examines how climate change contributes to trends in bloom frequency or severity and outlines approaches that states and tribes may use to monitor, report, and respond to harmful algae and cyanobacteria blooms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/ei-d-23-0008.1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Harmful algae and cyanobacteria blooms are increasing in frequency and intensity in freshwater systems due to anthropogenic impacts such as nutrient loading in watersheds and engineered alterations of natural waterways. There are multiple physical factors that affect the conditions in a freshwater system that contribute to optimal habitats for harmful algae and toxin-producing cyanobacteria. A growing body of research shows that climate change stressors also are impacting waterbody conditions that favor harmful algae and cyanobacteria species over other phytoplankton. The overgrowth of these organisms, or a “bloom,” increases the opportunity for exposure to toxins by humans, companion animals, livestock, and wildlife. As waters warm and precipitation patterns change over time, exposure to these blooms is projected to increase. Hence, it is important that states and tribes develop monitoring and reporting strategies as well as align governmental policies to protect their citizens and ecosystems within their jurisdiction. Currently, the policies and approaches taken to monitor and report on harmful algae and cyanobacteria blooms vary widely among states, and it is undetermined if any tribes have specific policies on harmful algae blooms. This paper synthesizes research on algal blooms in inland freshwater systems of the United States. This review examines how climate change contributes to trends in bloom frequency or severity and outlines approaches that states and tribes may use to monitor, report, and respond to harmful algae and cyanobacteria blooms.
气候变化在美国内陆水体淡水有害藻类大量繁殖中的作用
有害藻类和蓝藻水华在淡水系统中出现的频率和强度都在增加,这是由于人类活动造成的影响,如流域中的营养物质负荷和对自然水道的工程改造。有多种物理因素会影响淡水系统的条件,从而为有害藻类和产毒蓝藻提供最佳栖息地。越来越多的研究表明,气候变化的压力因素也会影响水体条件,使有害藻类和蓝藻物种优于其他浮游植物。这些生物的过度生长(或称 "藻华")增加了人类、伴侣动物、家畜和野生动物接触毒素的机会。随着时间的推移,水温升高,降水模式也会发生变化,预计人类接触这些藻华的机会也会增加。因此,各州和部落必须制定监测和报告策略,并调整政府政策,以保护其管辖范围内的公民和生态系统。目前,各州在监测和报告有害藻类和蓝藻藻华方面所采取的政策和方法差别很大,而且尚未确定是否有任何部落针对有害藻类藻华制定了具体政策。本文综述了有关美国内陆淡水系统藻华的研究。本综述探讨了气候变化如何导致藻华频率或严重程度的变化趋势,并概述了各州和部落可用于监测、报告和应对有害藻类和蓝藻藻华的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信