BannMI deciphers potential n-to-1 information transduction in signaling pathways to unravel message of intrinsic apoptosis

Bettina Schmidt, Christine Sers, Nadja Klein
{"title":"BannMI deciphers potential n-to-1 information transduction in signaling pathways to unravel message of intrinsic apoptosis","authors":"Bettina Schmidt, Christine Sers, Nadja Klein","doi":"10.1093/bioadv/vbad175","DOIUrl":null,"url":null,"abstract":"Cell fate decisions, such as apoptosis or proliferation, are communicated via signaling pathways. The pathways are heavily intertwined and often consist of sequential interaction of proteins (kinases). Information integration takes place on the protein level via n-to-1 interactions. A state-of-the-art procedure to quantify information flow (edges) between signaling proteins (nodes) is network inference. However, edge weight calculation typically refers to 1-to-1 interactions only and relies on mean protein phosphorylation levels instead of single cell distributions. Information theoretic measures such as the mutual information (MI) have the potential to overcome these shortcomings but are still rarely used. This work proposes a Bayesian nearest neighbor (NN)-based MI estimator (BannMI) to quantify n-to-1 kinase dependency in signaling pathways. BannMI outperforms the state-of-the-art MI estimator on protein-like data in terms of mean squared error and Pearson correlation. Using BannMI, we analyse apoptotic signaling in phosphoproteomic cancerous and non-cancerous breast cell line data. Our work provides evidence for cooperative signaling of several kinases in programmed cell death and identifies a potential key role of the mitogen-activated protein (MAP) kinase p38.","PeriodicalId":505477,"journal":{"name":"Bioinformatics Advances","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbad175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell fate decisions, such as apoptosis or proliferation, are communicated via signaling pathways. The pathways are heavily intertwined and often consist of sequential interaction of proteins (kinases). Information integration takes place on the protein level via n-to-1 interactions. A state-of-the-art procedure to quantify information flow (edges) between signaling proteins (nodes) is network inference. However, edge weight calculation typically refers to 1-to-1 interactions only and relies on mean protein phosphorylation levels instead of single cell distributions. Information theoretic measures such as the mutual information (MI) have the potential to overcome these shortcomings but are still rarely used. This work proposes a Bayesian nearest neighbor (NN)-based MI estimator (BannMI) to quantify n-to-1 kinase dependency in signaling pathways. BannMI outperforms the state-of-the-art MI estimator on protein-like data in terms of mean squared error and Pearson correlation. Using BannMI, we analyse apoptotic signaling in phosphoproteomic cancerous and non-cancerous breast cell line data. Our work provides evidence for cooperative signaling of several kinases in programmed cell death and identifies a potential key role of the mitogen-activated protein (MAP) kinase p38.
BannMI 破译信号通路中潜在的 n 对 1 信息传递,揭示内在凋亡的信息
细胞命运的决定,如凋亡或增殖,是通过信号通路传递的。这些途径相互交织,通常由蛋白质(激酶)的连续相互作用组成。信息整合是通过 n 对 1 的相互作用在蛋白质水平上进行的。量化信号蛋白(节点)之间信息流(边)的最先进程序是网络推理。然而,边缘权重计算通常只涉及 1 对 1 的相互作用,并依赖于平均蛋白质磷酸化水平而非单细胞分布。互信息(MI)等信息论测量方法有可能克服这些缺点,但仍然很少使用。这项研究提出了一种基于贝叶斯近邻(NN)的互信息估计器(BannMI),用于量化信号通路中 n 对 1 的激酶依赖性。在蛋白质类数据上,BannMI 在均方误差和皮尔逊相关性方面优于最先进的 MI 估计器。利用 BannMI,我们分析了癌症和非癌症乳腺细胞系磷酸蛋白组数据中的凋亡信号。我们的研究为程序性细胞死亡中几种激酶的合作信号转导提供了证据,并确定了丝裂原活化蛋白(MAP)激酶 p38 的潜在关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信