M. Garrosa, M. Ceccarelli, Vicente Díaz, Matteo Russo
{"title":"Experimental Validation of a Driver Monitoring System","authors":"M. Garrosa, M. Ceccarelli, Vicente Díaz, Matteo Russo","doi":"10.3390/machines11121060","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of the risk of neck injury in vehicle occupants as a consequence of an impact. A review of the formulation of indexes that are used in the assessment and investigation of neck injury risk is discussed with the aim of providing a new, more appropriate index using suitable sensorized equipment. An experimental analysis is proposed with a new driver monitoring device using low-cost sensors. The system consists of wearable units for the head, neck, and torso where inertial measurement sensors (IMU) are installed to record data concerning the occupant’s head, neck, and torso accelerations while the vehicle moves. Two laser infrared distance sensors are also installed on the vehicle’s steering wheel to record the position data of the head and neck, as well as an additional IMU for vehicle acceleration values. To validate both the device and the new index, experiments are designed in which different sensorized volunteers reproduce an emergency braking maneuver with an instrumented vehicle at speeds of 10, 20, and 30 km/h before the beginning of any braking action. The neck is particularly sensitive to sudden changes in acceleration, so a sudden braking maneuver is enough to constitute a potential risk of cervical spine injury. During the experiments, large accelerations and displacements were recorded as the test speed increased. The largest accelerations were obtained in the experimental test at a speed of 30 km/h with values of 19.17, 9.57, 9.28, and 5.09 m/s2 in the head, torso, neck, and vehicle, respectively. In the same experiment, the largest displacement of the head was 0.33 m and that of the neck was 0.27 m. Experimental results have verified that the designed device can be effectively used to characterize the biomechanical response of the neck in car impacts. The new index is also able to quantify a neck injury risk by taking into account the dynamics of a vehicle and the kinematics of the occupant’s head, neck, and torso. The numerical value of the new index is inversely proportional to the acceleration experienced by the vehicle occupant, so that small values indicate risky conditions.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121060","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an analysis of the risk of neck injury in vehicle occupants as a consequence of an impact. A review of the formulation of indexes that are used in the assessment and investigation of neck injury risk is discussed with the aim of providing a new, more appropriate index using suitable sensorized equipment. An experimental analysis is proposed with a new driver monitoring device using low-cost sensors. The system consists of wearable units for the head, neck, and torso where inertial measurement sensors (IMU) are installed to record data concerning the occupant’s head, neck, and torso accelerations while the vehicle moves. Two laser infrared distance sensors are also installed on the vehicle’s steering wheel to record the position data of the head and neck, as well as an additional IMU for vehicle acceleration values. To validate both the device and the new index, experiments are designed in which different sensorized volunteers reproduce an emergency braking maneuver with an instrumented vehicle at speeds of 10, 20, and 30 km/h before the beginning of any braking action. The neck is particularly sensitive to sudden changes in acceleration, so a sudden braking maneuver is enough to constitute a potential risk of cervical spine injury. During the experiments, large accelerations and displacements were recorded as the test speed increased. The largest accelerations were obtained in the experimental test at a speed of 30 km/h with values of 19.17, 9.57, 9.28, and 5.09 m/s2 in the head, torso, neck, and vehicle, respectively. In the same experiment, the largest displacement of the head was 0.33 m and that of the neck was 0.27 m. Experimental results have verified that the designed device can be effectively used to characterize the biomechanical response of the neck in car impacts. The new index is also able to quantify a neck injury risk by taking into account the dynamics of a vehicle and the kinematics of the occupant’s head, neck, and torso. The numerical value of the new index is inversely proportional to the acceleration experienced by the vehicle occupant, so that small values indicate risky conditions.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.