Utilización de reglas de asociación para determinar soluciones tecnológico-constructivas para el mejoramiento de la eficiencia energética en edificios de salud
Emilia Urteneche, Dante Andrés Barbero, I. Martini
{"title":"Utilización de reglas de asociación para determinar soluciones tecnológico-constructivas para el mejoramiento de la eficiencia energética en edificios de salud","authors":"Emilia Urteneche, Dante Andrés Barbero, I. Martini","doi":"10.18861/ania.2023.13.2.3484","DOIUrl":null,"url":null,"abstract":"En el año 2022, en la Argentina, el consumo energético del parque edilicio construido de los Sectores Residencial y Comercial-Público superó el 34 % y una parte significativa de este consumo se debe a los requerimientos para climatización. A su vez, las demandas de climatización se ven afectadas por la eficiencia energética de la envolvente edilicia, ya que a través de esta se produce el intercambio de calor entre el interior del edificio y su entorno. Este trabajo presenta la aplicación de un método de minería de datos, las reglas de asociación, para descubrir las soluciones tecnológico-constructivas más representativas presentes en la envolvente edilicia, en este caso, correspondientes a edificios destinados a la salud (Sector Comercial-Público). Para ello, es necesario identificar las distintas soluciones tecnológico-constructivas presentes en la envolvente (muros, carpinterías y techos) en los distintos edificios. Con tales datos como entrada, el algoritmo produce como resultados conjuntos de combinaciones de elementos de la envolvente que aparecen asociadas frecuentemente. A partir de estos resultados, se espera mejorar la eficiencia energética de las envolventes más representativas a partir de sugerir medidas específicas para cada terna encontrada facilitando, así, su implementación a escala masiva.","PeriodicalId":309662,"journal":{"name":"Anales de Investigación en Arquitectura","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales de Investigación en Arquitectura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18861/ania.2023.13.2.3484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
En el año 2022, en la Argentina, el consumo energético del parque edilicio construido de los Sectores Residencial y Comercial-Público superó el 34 % y una parte significativa de este consumo se debe a los requerimientos para climatización. A su vez, las demandas de climatización se ven afectadas por la eficiencia energética de la envolvente edilicia, ya que a través de esta se produce el intercambio de calor entre el interior del edificio y su entorno. Este trabajo presenta la aplicación de un método de minería de datos, las reglas de asociación, para descubrir las soluciones tecnológico-constructivas más representativas presentes en la envolvente edilicia, en este caso, correspondientes a edificios destinados a la salud (Sector Comercial-Público). Para ello, es necesario identificar las distintas soluciones tecnológico-constructivas presentes en la envolvente (muros, carpinterías y techos) en los distintos edificios. Con tales datos como entrada, el algoritmo produce como resultados conjuntos de combinaciones de elementos de la envolvente que aparecen asociadas frecuentemente. A partir de estos resultados, se espera mejorar la eficiencia energética de las envolventes más representativas a partir de sugerir medidas específicas para cada terna encontrada facilitando, así, su implementación a escala masiva.