{"title":"Experimental Approach for Assessing Dissipated Excess Pore Pressure Induced Settlement","authors":"A. Bayoumi, M. Chekired, M. Karray","doi":"10.1139/cgj-2022-0063","DOIUrl":null,"url":null,"abstract":"Upon dynamic loading, saturated soil loses its strength and behaves differently with respect to the excess pore pressure variation resulting in volumetric-induced settlements. Traditionally, these settlements have been evaluated using standard charts based on one soil type and its relative density (RD). To assess these settlements, this study established a unique experimental methodology based on two laboratory tests: triaxial simple shear and piezoelectric ring actuator technique. Fifty-seven tests were performed on Ottawa F65 sand under strain-controlled cyclic and post-cyclic conditions. A chart was generated, revealing a relationship between the dissipated energy from cyclic loading and volumetric strain (v), based on the shear wave velocity as a controlling factor. This study was compared with previous studies to verify the compatibility of the proposed approach. Another novelty was revealed by studying v variation with the dissipated pressure. This variation is presented in a post-seismic chart, in which deformations are tracked based on the initial soil state and maximum excess pore pressure generation ratio (Rumax). For each RD, the soil is divided between liquefied and non-liquefied states according to a specific Rumax (Rumax-trigger point). The calculation of the volume compressibility coefficient is proven to serve as a liquefaction-triggering criterion identifying the liquefied state.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"5 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2022-0063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Upon dynamic loading, saturated soil loses its strength and behaves differently with respect to the excess pore pressure variation resulting in volumetric-induced settlements. Traditionally, these settlements have been evaluated using standard charts based on one soil type and its relative density (RD). To assess these settlements, this study established a unique experimental methodology based on two laboratory tests: triaxial simple shear and piezoelectric ring actuator technique. Fifty-seven tests were performed on Ottawa F65 sand under strain-controlled cyclic and post-cyclic conditions. A chart was generated, revealing a relationship between the dissipated energy from cyclic loading and volumetric strain (v), based on the shear wave velocity as a controlling factor. This study was compared with previous studies to verify the compatibility of the proposed approach. Another novelty was revealed by studying v variation with the dissipated pressure. This variation is presented in a post-seismic chart, in which deformations are tracked based on the initial soil state and maximum excess pore pressure generation ratio (Rumax). For each RD, the soil is divided between liquefied and non-liquefied states according to a specific Rumax (Rumax-trigger point). The calculation of the volume compressibility coefficient is proven to serve as a liquefaction-triggering criterion identifying the liquefied state.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.