B-PSA: A Binary Pendulum Search Algorithm for the Feature Selection Problem

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Broderick Crawford, Felipe Cisternas-Caneo, Katherine Sepúlveda, Ricardo Soto, Álex Paz, Alvaro Peña, Claudio León de la Barra, E. Rodriguez-Tello, Gino Astorga, Carlos Castro, Franklin Johnson, Giovanni Giachetti
{"title":"B-PSA: A Binary Pendulum Search Algorithm for the Feature Selection Problem","authors":"Broderick Crawford, Felipe Cisternas-Caneo, Katherine Sepúlveda, Ricardo Soto, Álex Paz, Alvaro Peña, Claudio León de la Barra, E. Rodriguez-Tello, Gino Astorga, Carlos Castro, Franklin Johnson, Giovanni Giachetti","doi":"10.3390/computers12120249","DOIUrl":null,"url":null,"abstract":"The digitization of information and technological advancements have enabled us to gather vast amounts of data from various domains, including but not limited to medicine, commerce, and mining. Machine learning techniques use this information to improve decision-making, but they have a big problem: they are very sensitive to data variation, so it is necessary to clean them to remove irrelevant and redundant information. This removal of information is known as the Feature Selection Problem. This work presents the Pendulum Search Algorithm applied to solve the Feature Selection Problem. As the Pendulum Search Algorithm is a metaheuristic designed for continuous optimization problems, a binarization process is performed using the Two-Step Technique. Preliminary results indicate that our proposal obtains competitive results when compared to other metaheuristics extracted from the literature, solving well-known benchmarks.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12120249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The digitization of information and technological advancements have enabled us to gather vast amounts of data from various domains, including but not limited to medicine, commerce, and mining. Machine learning techniques use this information to improve decision-making, but they have a big problem: they are very sensitive to data variation, so it is necessary to clean them to remove irrelevant and redundant information. This removal of information is known as the Feature Selection Problem. This work presents the Pendulum Search Algorithm applied to solve the Feature Selection Problem. As the Pendulum Search Algorithm is a metaheuristic designed for continuous optimization problems, a binarization process is performed using the Two-Step Technique. Preliminary results indicate that our proposal obtains competitive results when compared to other metaheuristics extracted from the literature, solving well-known benchmarks.
B-PSA:针对特征选择问题的二元摆式搜索算法
信息数字化和技术进步使我们能够从各个领域收集大量数据,包括但不限于医学、商业和采矿。机器学习技术利用这些信息来改进决策,但它们有一个很大的问题:它们对数据变化非常敏感,因此有必要对它们进行清理,以去除不相关的冗余信息。这种信息去除被称为特征选择问题。本作品介绍了用于解决特征选择问题的钟摆搜索算法。由于钟摆搜索算法是一种为连续优化问题而设计的元启发式算法,因此使用两步法进行了二值化处理。初步结果表明,与从文献中提取的其他元启发式算法相比,我们的建议在解决著名的基准问题时获得了有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信