Understanding the Nonlinear Reactivity Promoting Effect of n-heptane Addition On the Binary Mixture From Low to Intermediate Temperature: A Case of Methane/n-heptane Mixtures

Zhaoming Mai, Yingtao Wu, Chenglong Tang, Wei Wang, Zuohua Huang
{"title":"Understanding the Nonlinear Reactivity Promoting Effect of n-heptane Addition On the Binary Mixture From Low to Intermediate Temperature: A Case of Methane/n-heptane Mixtures","authors":"Zhaoming Mai, Yingtao Wu, Chenglong Tang, Wei Wang, Zuohua Huang","doi":"10.1115/1.4064148","DOIUrl":null,"url":null,"abstract":"Adding high reactivity fuel in the binary mixtures generally exhibits nonlinear promoting effect on the ignition. To understand the effect of n-heptane (NC7H16) addition on the auto-ignition of methane (CH4) at low to intermediate temperatures, the ignition delay times (IDTs) of stoichiometric CH4/NC7H16 blends with varying NC7H16 concentrations were measured at temperatures from 600 to 1000 K, pressures of 20 and 40 bar. Detailed chemical kinetic mechanisms were validated against the newly measured IDTs. Adding NC7H16 in the binary mixture shows a nonlinear promoting effect on the IDTs: micro addition of NC7H16 can significantly reduce the IDTs of the binary mixture when the NC7H16 is lower than 20%. However, the decrease of the IDTs becomes much slower when further increasing the NC7H16 addition. Affected by the negative temperature coefficient behavior (NTC) of NC7H16, this nonlinear effect is particularly notable at around 795 K, the low boundary of the NTC region. To reveal the nonlinear reactivity promoting effect of NC7H16 addition on the binary mixture, reaction flux, ignition sensitivity, rate of production of the key radicals along with heat production analyses were conducted. Apart from contributing more ȮH production through the low-temperature chain-branching reaction pathways of NC7H16, adding NC7H16 also promotes the pre-ignition heat release of the binary mixture. The heat release raises the system temperature and further promotes the mixture ignition, enhancing the nonlinear effect at low temperatures.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adding high reactivity fuel in the binary mixtures generally exhibits nonlinear promoting effect on the ignition. To understand the effect of n-heptane (NC7H16) addition on the auto-ignition of methane (CH4) at low to intermediate temperatures, the ignition delay times (IDTs) of stoichiometric CH4/NC7H16 blends with varying NC7H16 concentrations were measured at temperatures from 600 to 1000 K, pressures of 20 and 40 bar. Detailed chemical kinetic mechanisms were validated against the newly measured IDTs. Adding NC7H16 in the binary mixture shows a nonlinear promoting effect on the IDTs: micro addition of NC7H16 can significantly reduce the IDTs of the binary mixture when the NC7H16 is lower than 20%. However, the decrease of the IDTs becomes much slower when further increasing the NC7H16 addition. Affected by the negative temperature coefficient behavior (NTC) of NC7H16, this nonlinear effect is particularly notable at around 795 K, the low boundary of the NTC region. To reveal the nonlinear reactivity promoting effect of NC7H16 addition on the binary mixture, reaction flux, ignition sensitivity, rate of production of the key radicals along with heat production analyses were conducted. Apart from contributing more ȮH production through the low-temperature chain-branching reaction pathways of NC7H16, adding NC7H16 also promotes the pre-ignition heat release of the binary mixture. The heat release raises the system temperature and further promotes the mixture ignition, enhancing the nonlinear effect at low temperatures.
理解正庚烷添加对二元混合物从低温到中温的非线性反应促进效应:以甲烷/正庚烷混合物为例
在二元混合物中添加高反应活性燃料通常会对点火产生非线性促进作用。为了了解正庚烷(NC7H16)的添加对甲烷(CH4)在中低温下自燃的影响,我们在温度为 600 至 1000 K、压力为 20 和 40 巴的条件下测量了不同 NC7H16 浓度的化学计量 CH4/NC7H16 混合物的点火延迟时间(IDTs)。根据新测量的 IDT 验证了详细的化学动力学机制。在二元混合物中添加 NC7H16 对 IDTs 有非线性促进作用:当 NC7H16 低于 20% 时,微量添加 NC7H16 可显著降低二元混合物的 IDTs。然而,当 NC7H16 的添加量进一步增加时,IDT 的下降速度会变得更慢。受 NC7H16 负温度系数行为(NTC)的影响,这种非线性效应在 795 K 左右(NTC 区域的低边界)尤为明显。为了揭示添加 NC7H16 对二元混合物的非线性反应性促进作用,我们进行了反应通量、点火灵敏度、关键自由基产生率和产热分析。除了通过 NC7H16 的低温链支化反应途径产生更多的ȮH 外,添加 NC7H16 还促进了二元混合物的点火前热释放。热量释放提高了系统温度,进一步促进了混合物的点燃,增强了低温下的非线性效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信