Md Sojib Hossain, J. Skelton, William Moffat, James Fitz-Gerald
{"title":"Laser Surface Melting to Mitigate Intergranular Corrosion of Sensitized AA 5083","authors":"Md Sojib Hossain, J. Skelton, William Moffat, James Fitz-Gerald","doi":"10.5006/4438","DOIUrl":null,"url":null,"abstract":"AA5083 is a solution-strengthened, supersaturated Al-Mg alloy. It has become widely used in corrosive and harsh environments, such as marine settings, due to its exceptional corrosion resistance and impressive strength-to-weight ratio. However, when exposed to moderately elevated temperatures, the alloy undergoes a process called sensitization, resulting in the precipitation of the β-phase. This intermetallic precipitate is rich in magnesium and has anodic properties, creating a micro-galvanic couple with the more noble aluminum (Al) matrix. Consequently, the sensitized alloy experiences intergranular corrosion due to the anodic dissolution of the grain boundary in a corrosive environment. Various techniques for dissolving intermetallic particles (IMPs) into the matrix have been reported in the literature, but they are often impractical for service components, and traditional solutionizing treatments tend to decrease mechanical properties. This study aimed to investigate the impact of pulsed excimer laser irradiation, as a novel approach, on the surface morphology, chemical composition, and electrochemical behavior of highly sensitized AA5083 samples. To achieve this, various analytical techniques were employed, including profilometry, optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and localized potentiostat scans. The results of this investigation showed that laser surface melting (LSM) led to a reduction in the open circuit potential (OCP) and cathodic current density in a 0.6 M NaCl aqueous solution, mainly due to increased surface homogenization. Furthermore, multiple grazing incident X-ray diffraction (GIXRD) scans were performed to identify the changes in the metallurgical and crystallographic parameters in the near-surface region. Anodic polarization scans of the LSM surface galvanically coupled with a more cathodic base metal exhibited a lower corrosion current density than the theoretical value suggested by mixed potential theory. The improved performance could potentially be attributed to the surface homogenization and formation of a robust passive layer on the LSM surface.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"90 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4438","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AA5083 is a solution-strengthened, supersaturated Al-Mg alloy. It has become widely used in corrosive and harsh environments, such as marine settings, due to its exceptional corrosion resistance and impressive strength-to-weight ratio. However, when exposed to moderately elevated temperatures, the alloy undergoes a process called sensitization, resulting in the precipitation of the β-phase. This intermetallic precipitate is rich in magnesium and has anodic properties, creating a micro-galvanic couple with the more noble aluminum (Al) matrix. Consequently, the sensitized alloy experiences intergranular corrosion due to the anodic dissolution of the grain boundary in a corrosive environment. Various techniques for dissolving intermetallic particles (IMPs) into the matrix have been reported in the literature, but they are often impractical for service components, and traditional solutionizing treatments tend to decrease mechanical properties. This study aimed to investigate the impact of pulsed excimer laser irradiation, as a novel approach, on the surface morphology, chemical composition, and electrochemical behavior of highly sensitized AA5083 samples. To achieve this, various analytical techniques were employed, including profilometry, optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and localized potentiostat scans. The results of this investigation showed that laser surface melting (LSM) led to a reduction in the open circuit potential (OCP) and cathodic current density in a 0.6 M NaCl aqueous solution, mainly due to increased surface homogenization. Furthermore, multiple grazing incident X-ray diffraction (GIXRD) scans were performed to identify the changes in the metallurgical and crystallographic parameters in the near-surface region. Anodic polarization scans of the LSM surface galvanically coupled with a more cathodic base metal exhibited a lower corrosion current density than the theoretical value suggested by mixed potential theory. The improved performance could potentially be attributed to the surface homogenization and formation of a robust passive layer on the LSM surface.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.