Road Crack Detection using Yolo-V5 and Adaptive Thresholding

Heri Suhendar
{"title":"Road Crack Detection using Yolo-V5 and Adaptive Thresholding","authors":"Heri Suhendar","doi":"10.33633/jais.v8i3.9437","DOIUrl":null,"url":null,"abstract":"Road crack detection is a critical aspect of infrastructure maintenance, ensuring the safety and durability of roadways. This study presents an innovative approach leveraging image processing techniques, YOLO-V5 model, and adaptive thresholding for efficient and accurate road crack detection. The utilization of adaptive thresholding enables the system to handle complex lighting variations and diverse road textures, enhancing the precision of crack identification. Integrating the YOLO-V5 model further facilitates real-time detection and precise localization of road crack regions, contributing to effective and timely maintenance strategies. The research findings underscore the robustness and efficacy of the proposed methodology, emphasizing its potential for enhancing road safety and durability.","PeriodicalId":289013,"journal":{"name":"Journal of Applied Intelligent System","volume":"341 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33633/jais.v8i3.9437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Road crack detection is a critical aspect of infrastructure maintenance, ensuring the safety and durability of roadways. This study presents an innovative approach leveraging image processing techniques, YOLO-V5 model, and adaptive thresholding for efficient and accurate road crack detection. The utilization of adaptive thresholding enables the system to handle complex lighting variations and diverse road textures, enhancing the precision of crack identification. Integrating the YOLO-V5 model further facilitates real-time detection and precise localization of road crack regions, contributing to effective and timely maintenance strategies. The research findings underscore the robustness and efficacy of the proposed methodology, emphasizing its potential for enhancing road safety and durability.
使用 Yolo-V5 和自适应阈值法检测路面裂缝
道路裂缝检测是基础设施维护的一个重要方面,可确保道路的安全性和耐久性。本研究提出了一种创新方法,利用图像处理技术、YOLO-V5 模型和自适应阈值技术实现高效、准确的道路裂缝检测。利用自适应阈值技术,系统可以处理复杂的光照变化和不同的路面纹理,从而提高裂缝识别的精度。整合 YOLO-V5 模型进一步促进了道路裂缝区域的实时检测和精确定位,有助于制定有效、及时的维护策略。研究结果证明了所提出方法的稳健性和有效性,强调了其在提高道路安全性和耐久性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信