Exploring topological phase transition in Pt2Hg1−xTlxSe3

Deergh Bahadur Shahi, Dipak Bhattarai, Madhav Prasad Ghimire
{"title":"Exploring topological phase transition in Pt2Hg1−xTlxSe3","authors":"Deergh Bahadur Shahi, Dipak Bhattarai, Madhav Prasad Ghimire","doi":"10.3126/bibechana.v20i3.58632","DOIUrl":null,"url":null,"abstract":"The transition from trivial to non-trivial phase in two-dimensional materials are called a topological phase transition (TPT). The Berry phase, non-local string order parameter, and edge states define the topological nature of the system. A newly discovered jacutingaite ma- terial Pt2HgSe3 is a layered material which occurs naturally in the form of minerals. The material can be exfoliated and was predicted as a quantum spin Hall insulator. Here, on the basis of density functional theory and tight-binding calculations, we explore Pt2Hg1−xTlxSe3 (x = 0.25, 0.50, 0.75, 1) to understand the electronic and topological properties. We start with the parent material Pt2HgSe3 wherein Hg is replaced partially with x amount of Tl, to tune the topological phases. From the electronic structure calculations, Pt2HgSe3 is found to be a non-trivial semimetal in it’s bulk. Upon electron doping, the material transforms to strong topological metallic phase. The topological Z2 invariant calculation shows TPT in Pt2Hg1−xTlxSe3 with weak topological insulating state (0;001) for x=0, to strong topological metal (1;000) for x=1, respectively.","PeriodicalId":8759,"journal":{"name":"Bibechana","volume":"181 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bibechana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/bibechana.v20i3.58632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transition from trivial to non-trivial phase in two-dimensional materials are called a topological phase transition (TPT). The Berry phase, non-local string order parameter, and edge states define the topological nature of the system. A newly discovered jacutingaite ma- terial Pt2HgSe3 is a layered material which occurs naturally in the form of minerals. The material can be exfoliated and was predicted as a quantum spin Hall insulator. Here, on the basis of density functional theory and tight-binding calculations, we explore Pt2Hg1−xTlxSe3 (x = 0.25, 0.50, 0.75, 1) to understand the electronic and topological properties. We start with the parent material Pt2HgSe3 wherein Hg is replaced partially with x amount of Tl, to tune the topological phases. From the electronic structure calculations, Pt2HgSe3 is found to be a non-trivial semimetal in it’s bulk. Upon electron doping, the material transforms to strong topological metallic phase. The topological Z2 invariant calculation shows TPT in Pt2Hg1−xTlxSe3 with weak topological insulating state (0;001) for x=0, to strong topological metal (1;000) for x=1, respectively.
探索 Pt2Hg1-xTlxSe3 中的拓扑相变
二维材料中从三相到非三相的转变被称为拓扑相变(TPT)。贝里相、非局部弦阶参数和边缘状态决定了系统的拓扑性质。新发现的黝帘石材料 Pt2HgSe3 是一种以矿物形式自然存在的层状材料。这种材料可以剥离,并被预测为量子自旋霍尔绝缘体。在此,我们以密度泛函理论和紧密结合计算为基础,探讨了 Pt2Hg1-xTlxSe3 (x = 0.25、0.50、0.75、1),以了解其电子和拓扑特性。我们从母体材料 Pt2HgSe3 开始,用 x 量的 Tl 替代部分 Hg,以调整拓扑相。通过电子结构计算,我们发现 Pt2HgSe3 在其本体中是一种非三价半金属。掺入电子后,该材料转变为强拓扑金属相。拓扑 Z2 不变量计算显示,Pt2Hg1-xTlxSe3 中的 TPT 分别为 x=0 时的弱拓扑绝缘态(0;001)和 x=1 时的强拓扑金属态(1;000)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信