Harvest Forecasting Improvement Using Federated Learning and Ensemble Model

J. j, Jin Gwang Koh, Sung Keun Lee
{"title":"Harvest Forecasting Improvement Using Federated Learning and Ensemble Model","authors":"J. j, Jin Gwang Koh, Sung Keun Lee","doi":"10.30693/smj.2023.12.10.9","DOIUrl":null,"url":null,"abstract":"Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"129 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.10.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.
利用联合学习和集合模型改进收成预测
收成预测是对温度、雨量、环境及其关系等多方面的巨大需求。现有研究调查了气候条件,帮助种植者在农场播种前了解收成产量。拟议的研究使用了联合学习。此外,还采用了其他广泛使用的技术,如袋式分类器、额外三叉分类器、线性判别分析分类器、二次判别分析分类器、随机梯度提升分类器、混合模型、随机森林回归器和 AdaBoost。这九种算法都取得了令人满意的模范精确度。所提出算法的强大贡献可以创建精确的收成预测。最后,我们打算将我们的研究与之前的研究成果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信