Bitcoin Price Prediction Using Support Vector Regression

Wulan Septya Zulmawati, Nonong amalita, Syafriandi Syafriandi, Admi Salma
{"title":"Bitcoin Price Prediction Using Support Vector Regression","authors":"Wulan Septya Zulmawati, Nonong amalita, Syafriandi Syafriandi, Admi Salma","doi":"10.24036/ujsds/vol1-iss5/121","DOIUrl":null,"url":null,"abstract":"Cryptocurrency provides the most return compared to other investment instruments, causing many novice traders to be attracted to crypto as a tool to make significant profits in the short term. One of the most widely used cryptocurrencies is Bitcoin. Trading is closely related to technical analysis. Various techniques in technical analysis cause beginner traders to have difficulties choosing the right technique. Machine learning methods can be an alternative to overcoming the barriers of beginner traders in the crypto market with predictive methods. One method of machine learning for prediction is Support Vector Regression (SVR). Using the Grid Search algorithm shows that this method has a good predictive accuracy value of 99,25% and MAPE 8,70%.","PeriodicalId":220933,"journal":{"name":"UNP Journal of Statistics and Data Science","volume":"207 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNP Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24036/ujsds/vol1-iss5/121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptocurrency provides the most return compared to other investment instruments, causing many novice traders to be attracted to crypto as a tool to make significant profits in the short term. One of the most widely used cryptocurrencies is Bitcoin. Trading is closely related to technical analysis. Various techniques in technical analysis cause beginner traders to have difficulties choosing the right technique. Machine learning methods can be an alternative to overcoming the barriers of beginner traders in the crypto market with predictive methods. One method of machine learning for prediction is Support Vector Regression (SVR). Using the Grid Search algorithm shows that this method has a good predictive accuracy value of 99,25% and MAPE 8,70%.
使用支持向量回归预测比特币价格
与其他投资工具相比,加密货币的回报率最高,因此许多新手交易者都被加密货币吸引,将其作为在短期内赚取可观利润的工具。比特币是使用最广泛的加密货币之一。交易与技术分析密切相关。技术分析中的各种技术导致初学者难以选择正确的技术。机器学习方法可以作为一种替代方案,用预测方法克服初学者在加密货币市场中的障碍。支持向量回归(SVR)是一种用于预测的机器学习方法。使用网格搜索算法显示,这种方法的预测准确率高达 99.25%,MAPE 为 8.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信