ФОРМУВАННЯ ПОНЯТТЯ ПЛОСКОГО РОЗМІЩЕННЯ ТОЧОК ЗАСОБАМИ МЕТРИЧНОЇ ГЕОМЕТРІЇ ПРИ ВИВЧЕННІ МЕТРИЧНИХ ПРОСТОРІВ

Катерина Валько, Валерій Кузьмич, Людмила Кузьмич, Олександр Савченко
{"title":"ФОРМУВАННЯ ПОНЯТТЯ ПЛОСКОГО РОЗМІЩЕННЯ ТОЧОК ЗАСОБАМИ МЕТРИЧНОЇ ГЕОМЕТРІЇ ПРИ ВИВЧЕННІ МЕТРИЧНИХ ПРОСТОРІВ","authors":"Катерина Валько, Валерій Кузьмич, Людмила Кузьмич, Олександр Савченко","doi":"10.31110/2413-1571-2023-038-5-001","DOIUrl":null,"url":null,"abstract":"Постановка проблеми. При вивченні метричних просторів у здобувачів вищої освіти часто виникають труднощі з розумінням основних понять та властивостей цих просторів. Це, у значній мірі, є наслідком значного рівня формалізації таких понять з одного боку, та збереження відповідних формулювань та назв, звичних для здобувачів зі шкільного курсу математики. Найпростіші поняття взаємного розміщення точок метричного простору, наприклад, прямолінійність їх розміщення, у різних просторах можуть набувати різних властивостей. Інколи ці властивості ніяким чином не узгоджуються з відповідними властивостями у звичних для здобувачів евклідових просторах. Для подолання вказаних труднощів доцільно використовувати методи геометричної інтерпретації та візуалізації цих властивостей. Доцільним, при цьому, є використання елементів метричної геометрії. Її методи дозволяють інтерпретувати геометричні особливості взаємного розміщення точок метричного простору у звичних для здобувачів вищої освіти декартових (прямокутних) системах координат. Більше того, стає можливим візуалізація цих особливостей за допомогою графічних редакторів, оскільки вони, як правило, використовують числові значення координат точок для їх візуалізації. У роботі наведено приклади візуалізації властивості плоского розміщення чотирьох точок неевклідового метричного простору у прямокутній тривимірній системі координат. Матеріали та методи. Результати роботи отримані на підставі аналізу діючих підручників з вищої математики для закладів вищої освіти, наукових публікацій та апробовані при читанні відповідного спецкурсу студентам спеціальності «014.04 Середня освіта (математика)» магістерського рівня вищої освіти. Для отримання зображень використовувалось динамічне геометричне середовище GeoGebra 3D. Результати. На основі означення кута як упорядкованої трійки точок довільного метричного простору, та кутової характеристики цього кута, встановлено факт плоского розміщення чотирьох точок неевклідового метричного простору, та наведено приклади цифрової візуалізації цього розміщення за допомогою динамічного геометричного середовища GeoGebra 3D. Така візуалізація дає можливість знайомити здобувачів вищої освіти з найпростішими особливостями неевклідових геометрій. Висновки. Аналітичний апарат метричної геометрії дає можливість сформувати узагальнене поняття плоского розміщення точок довільного метричного простору. Використання цифрових технологій, зокрема графічних редакторів, дозволяє зробити візуалізацію окремих особливостей взаємного розміщення точок довільного метричного простору. Використання достатньо простих аналітичних перетворень при побудові поняття плоского розміщення точок робить можливим знайомство здобувачів загальної середньої освіти, які навчаються у профільних класах з поглибленим вивченням математики, з основами неевклідових геометрій.","PeriodicalId":244674,"journal":{"name":"Physical and Mathematical Education","volume":"57 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Mathematical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31110/2413-1571-2023-038-5-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Постановка проблеми. При вивченні метричних просторів у здобувачів вищої освіти часто виникають труднощі з розумінням основних понять та властивостей цих просторів. Це, у значній мірі, є наслідком значного рівня формалізації таких понять з одного боку, та збереження відповідних формулювань та назв, звичних для здобувачів зі шкільного курсу математики. Найпростіші поняття взаємного розміщення точок метричного простору, наприклад, прямолінійність їх розміщення, у різних просторах можуть набувати різних властивостей. Інколи ці властивості ніяким чином не узгоджуються з відповідними властивостями у звичних для здобувачів евклідових просторах. Для подолання вказаних труднощів доцільно використовувати методи геометричної інтерпретації та візуалізації цих властивостей. Доцільним, при цьому, є використання елементів метричної геометрії. Її методи дозволяють інтерпретувати геометричні особливості взаємного розміщення точок метричного простору у звичних для здобувачів вищої освіти декартових (прямокутних) системах координат. Більше того, стає можливим візуалізація цих особливостей за допомогою графічних редакторів, оскільки вони, як правило, використовують числові значення координат точок для їх візуалізації. У роботі наведено приклади візуалізації властивості плоского розміщення чотирьох точок неевклідового метричного простору у прямокутній тривимірній системі координат. Матеріали та методи. Результати роботи отримані на підставі аналізу діючих підручників з вищої математики для закладів вищої освіти, наукових публікацій та апробовані при читанні відповідного спецкурсу студентам спеціальності «014.04 Середня освіта (математика)» магістерського рівня вищої освіти. Для отримання зображень використовувалось динамічне геометричне середовище GeoGebra 3D. Результати. На основі означення кута як упорядкованої трійки точок довільного метричного простору, та кутової характеристики цього кута, встановлено факт плоского розміщення чотирьох точок неевклідового метричного простору, та наведено приклади цифрової візуалізації цього розміщення за допомогою динамічного геометричного середовища GeoGebra 3D. Така візуалізація дає можливість знайомити здобувачів вищої освіти з найпростішими особливостями неевклідових геометрій. Висновки. Аналітичний апарат метричної геометрії дає можливість сформувати узагальнене поняття плоского розміщення точок довільного метричного простору. Використання цифрових технологій, зокрема графічних редакторів, дозволяє зробити візуалізацію окремих особливостей взаємного розміщення точок довільного метричного простору. Використання достатньо простих аналітичних перетворень при побудові поняття плоского розміщення точок робить можливим знайомство здобувачів загальної середньої освіти, які навчаються у профільних класах з поглибленим вивченням математики, з основами неевклідових геометрій.
在度量空间研究中通过度量几何形成点的平放概念
问题陈述。在学习度量空间时,高校学生往往难以理解这些空间的基本概念和性质。这主要是由于一方面这些概念的形式化程度很高,另一方面学生在学校数学课程中熟悉的相关措辞和名称仍被保留。度量空间中点的相对位置的最简单概念,例如点的直线位置,在不同的空间中可能具有不同的性质。有时,这些性质与学生熟悉的欧几里得空间中的相应性质完全不一致。为了克服这些困难,最好使用几何解释和可视化这些性质的方法。最好使用公元几何学的要素。它的方法可以在高等院校学生熟悉的笛卡尔(矩形)坐标系中解释度量空间中点的相对定位的几何特征。此外,由于图形编辑器通常使用点坐标的数值进行可视化,因此在图形编辑器的帮助下将这些特征可视化也成为可能。本文将举例说明在矩形三维坐标系中,非欧几里得度量空间的四个点的平面度特性的可视化。 材料和方法。工作成果基于对现有高等院校高等数学教科书和科学出版物的分析,并在向高等教育硕士专业 "014.04 中等教育(数学)"学生教授相关专业课程的过程中进行了测试。使用动态几何环境 GeoGebra 3D 获取图像。 结果。根据将角定义为任意度量空间点的有序三重和该角的角度特征,确定了非欧几里得度量空间四点平放的事实,并给出了使用动态几何环境 GeoGebra 3D 对这种平放进行数字可视化的示例。这种可视化可以向高校学生介绍非欧几何的最简单特征。结论。度量几何学的分析装置使我们有可能形成任意度量空间点的平面位置的一般概念。利用数字技术,特别是图形编辑器,可以将任意公制空间中点的相互位置的某些特征可视化。在构建点的平放概念时,使用相当简单的分析变换,可以向在专业班深入学习数学的普通中等教育学生介绍非欧几里得几何的基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信