Modified Firefly Algorithm using Iterated Descent Method to Solve Machine Scheduling Problems

Hafed M. Motair
{"title":"Modified Firefly Algorithm using Iterated Descent Method to Solve Machine Scheduling Problems","authors":"Hafed M. Motair","doi":"10.22401/anjs.26.4.13","DOIUrl":null,"url":null,"abstract":"One of the most efficient metaheuristic algorithms that is used to solve hard optimization problems is the firefly algorithm (FFA). In this paper we use this algorithm to solve a single machine scheduling problem, we aim to minimize the sum of the two cost functions: the maximum tardiness and the maximum earliness. This problem (P) is NP-hard so we solve this problem using FFA as a metaheuristic algorithm. To explore the search space and get a good solution to a problem (Q), we hybridize FFA by Iterated Descent Method (IDM) in three ways and the results are FFA1, FFA2, and FFA3. In the computational test, we evaluate these algorithms (FFA, FFA1, FFA2, FFA3) compared with the genetic algorithm (GA) through a simulation process with job sizes from 10 jobs to 100 jobs. The results indicate that these modifications improve the performance of the original FFA and one of them (FFA3) gives better performance than others.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"437 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.26.4.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most efficient metaheuristic algorithms that is used to solve hard optimization problems is the firefly algorithm (FFA). In this paper we use this algorithm to solve a single machine scheduling problem, we aim to minimize the sum of the two cost functions: the maximum tardiness and the maximum earliness. This problem (P) is NP-hard so we solve this problem using FFA as a metaheuristic algorithm. To explore the search space and get a good solution to a problem (Q), we hybridize FFA by Iterated Descent Method (IDM) in three ways and the results are FFA1, FFA2, and FFA3. In the computational test, we evaluate these algorithms (FFA, FFA1, FFA2, FFA3) compared with the genetic algorithm (GA) through a simulation process with job sizes from 10 jobs to 100 jobs. The results indicate that these modifications improve the performance of the original FFA and one of them (FFA3) gives better performance than others.
使用迭代后裔法解决机器调度问题的改进型萤火虫算法
萤火虫算法(FFA)是用于解决高难度优化问题的最有效的元启发式算法之一。在本文中,我们使用该算法来解决单机调度问题,我们的目标是最小化两个成本函数之和:最大迟到率和最大早到率。这个问题(P)是 NP 难问题,因此我们使用 FFA 作为元启发式算法来解决这个问题。为了探索搜索空间并获得问题(Q)的良好解决方案,我们通过迭代后裔法(IDM)以三种方式对 FFA 进行了混合,结果分别为 FFA1、FFA2 和 FFA3。在计算测试中,我们通过模拟作业大小从 10 个作业到 100 个作业的过程,对这些算法(FFA、FFA1、FFA2、FFA3)与遗传算法(GA)进行了比较评估。结果表明,这些修改提高了原始 FFA 的性能,其中一种算法(FFA3)的性能优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信