Avoidence Strategies for Fractional Order Systems with Caputo Derivative

IF 1 Q4 ENGINEERING, MECHANICAL
E. Pawłuszewicz
{"title":"Avoidence Strategies for Fractional Order Systems with Caputo Derivative","authors":"E. Pawłuszewicz","doi":"10.2478/ama-2023-0066","DOIUrl":null,"url":null,"abstract":"Abstract A control strategy is derived for fractional-order dynamic systems with Caputo derivative to guarantee collision-free trajectories for two agents. To guarantee that one agent keeps the state of the system out of a given set regardless of the other agent’s actions a Lyapunov-based approach is adopted. As a special case showing that the given approach to choosing proposed strategy is constructive for a fractional-order system with the Caputo derivative, a linear system as an example is discussed. Obtained results extend to the fractional order case the avoidance problem Leitman’s and Skowronski’s approach.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"16 7","pages":"570 - 574"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A control strategy is derived for fractional-order dynamic systems with Caputo derivative to guarantee collision-free trajectories for two agents. To guarantee that one agent keeps the state of the system out of a given set regardless of the other agent’s actions a Lyapunov-based approach is adopted. As a special case showing that the given approach to choosing proposed strategy is constructive for a fractional-order system with the Caputo derivative, a linear system as an example is discussed. Obtained results extend to the fractional order case the avoidance problem Leitman’s and Skowronski’s approach.
带有卡普托微分的分数阶系统的避让策略
摘要 针对具有卡普托导数的分数阶动态系统,提出了一种控制策略,以保证两个代理的轨迹不发生碰撞。为了保证一个代理无论另一个代理的行动如何,都能使系统状态保持在给定集合之外,采用了一种基于 Lyapunov 的方法。作为一个特例,我们以线性系统为例进行了讨论,以说明对于具有卡普托导数的分数阶系统,给定的选择策略方法是有建设性的。所获得的结果将莱特曼和斯考龙斯基方法的规避问题扩展到分数阶情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica et Automatica
Acta Mechanica et Automatica ENGINEERING, MECHANICAL-
CiteScore
1.40
自引率
0.00%
发文量
45
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信