Hacer Bilir Özhan, Musa Yildirim, Hamdi Öğüt, H. Öz
{"title":"Repair of Cracks in Concrete with the Microbial-Induced Calcite Precipitation (MICP) Method","authors":"Hacer Bilir Özhan, Musa Yildirim, Hamdi Öğüt, H. Öz","doi":"10.2478/sjce-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the microbiologically-induced calcium carbonate precipitation (MICP) method was employed to examine its potential for repairing cracks in concrete. In addition, specific gravity and porosity values were measured to examine the effect of calcite formations on concrete surfaces and microstructures. Bacteria-supplemented concrete repaired cracks up to 0.4 mm wide by filling them with CaCO3. Furthermore, this study not only examined the healing of the width but also the length of cracks. However, as the width of the treated cracks decreased, their length increased. This indicated that the MICP treatment is more effective in a limited crack range. Specific gravity values increased, and porosity values decreased in concrete supplemented with calcifying bacteria. SEM analyses showed that calcite is a bacterial product that forms a very tight bond with a cement gel and that calcite fills visible cracks and voids and creates more of a void-free and undamaged concrete structure.","PeriodicalId":43574,"journal":{"name":"Slovak Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovak Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sjce-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this study, the microbiologically-induced calcium carbonate precipitation (MICP) method was employed to examine its potential for repairing cracks in concrete. In addition, specific gravity and porosity values were measured to examine the effect of calcite formations on concrete surfaces and microstructures. Bacteria-supplemented concrete repaired cracks up to 0.4 mm wide by filling them with CaCO3. Furthermore, this study not only examined the healing of the width but also the length of cracks. However, as the width of the treated cracks decreased, their length increased. This indicated that the MICP treatment is more effective in a limited crack range. Specific gravity values increased, and porosity values decreased in concrete supplemented with calcifying bacteria. SEM analyses showed that calcite is a bacterial product that forms a very tight bond with a cement gel and that calcite fills visible cracks and voids and creates more of a void-free and undamaged concrete structure.