Recent progress on limit theorems for large stochastic particle systems

Max Fathi, Pierre Le Bris, A. Menegaki, Pierre Monmarche, Julien Reygner, Milica Tomasevic
{"title":"Recent progress on limit theorems for large stochastic particle systems","authors":"Max Fathi, Pierre Le Bris, A. Menegaki, Pierre Monmarche, Julien Reygner, Milica Tomasevic","doi":"10.1051/proc/202375002","DOIUrl":null,"url":null,"abstract":"This article presents a selection of recent results in the mathematical study of physical systems described by a large number of particles, with various types of interactions (mean-field, moderate, nearest-neighbor). Limit theorems are obtained concerning either the large-scale or the long-time behavior of these systems. These results rely on the use of a large range of mathematical tools, arising from both probability theory and the analysis of partial differential equations, and thereby illustrate fruitful interactions between these two disciplines.","PeriodicalId":505884,"journal":{"name":"ESAIM: Proceedings and Surveys","volume":"69 5-6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202375002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a selection of recent results in the mathematical study of physical systems described by a large number of particles, with various types of interactions (mean-field, moderate, nearest-neighbor). Limit theorems are obtained concerning either the large-scale or the long-time behavior of these systems. These results rely on the use of a large range of mathematical tools, arising from both probability theory and the analysis of partial differential equations, and thereby illustrate fruitful interactions between these two disciplines.
大型随机粒子系统极限定理的最新进展
这篇文章介绍了对由大量粒子描述的物理系统进行数学研究的部分最新成果,这些粒子具有各种类型的相互作用(均场、温和、近邻)。研究获得了有关这些系统的大尺度或长时间行为的极限定理。这些结果依赖于对概率论和偏微分方程分析所产生的大量数学工具的使用,从而说明了这两个学科之间富有成效的互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信