Ryta Łagocka, Mateusz Granat, Katarzyna Lewusz-Butkiewicz, M. Tomasik, M. Lipski
{"title":"The effect of thermal cycling on the surface roughness of nanohybrid and high-viscosity bulk-fill resin-based composites","authors":"Ryta Łagocka, Mateusz Granat, Katarzyna Lewusz-Butkiewicz, M. Tomasik, M. Lipski","doi":"10.21164/pomjlifesci.945","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: The aim of this study was to investigate the effect of thermal cycling on the surface geometry of high-viscosity bulk-fill resin-based composites (RBCs) compared to conventional nanohybrid composites. Materials and methods: Four conventional nanohybrid composites (Tetric EvoCeram – TEC, GrandioSO – GD, Filtek Z550 – FZ, and Ceram·X Mono – CX) and 4 high-viscosity bulk-fill composites (Tetric EvoCeram Bulk Fill – TBF, X-tra fil – XF, Filtek Bulk Fill Posterior – FBF, and QuixFil – QF) were tested. After the 2-step polishing procedure, the samples were divided into 2 groups: control group (K) and thermal cycling group (TC). Samples from the TC were subjected to thermal cycling according to ISO 11405 (THE-1100, SD Mechatronik GmbH). Surface geometry was evaluated by profilometry (Turbowave v. 7.36, Hommel-Etamic) and scanning electron microscope – SEM (VEGA 3, Tescan Analytics). Results: The applied thermal cycles increased the surface roughness of conventional RBCs: TEC (p = 0.000007), GD (p = 0.04), and CX (p = 0.0005). A reduction in the surface roughness of bulk-fill composites was observed in the case of materials: XF (p = 0.000003) and QF (p = 0.0002). Thermal cycling was shown to alter the surface roughness of the TEC, CX, XF, and QF materials. Conclusion: The application of thermal cycling in a water environment in accordance with the ISO 11405 standard causes the degradation of the organic matrix and the exposure of filler molecules on the surface of both conventional and high-viscosity bulk-fill composites. Some of the tested RBCs, especially those containing modern hydrophobic monomers, are less susceptible to these processes.","PeriodicalId":91594,"journal":{"name":"Pomeranian journal of life sciences","volume":"55 12","pages":"21 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomeranian journal of life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21164/pomjlifesci.945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Introduction: The aim of this study was to investigate the effect of thermal cycling on the surface geometry of high-viscosity bulk-fill resin-based composites (RBCs) compared to conventional nanohybrid composites. Materials and methods: Four conventional nanohybrid composites (Tetric EvoCeram – TEC, GrandioSO – GD, Filtek Z550 – FZ, and Ceram·X Mono – CX) and 4 high-viscosity bulk-fill composites (Tetric EvoCeram Bulk Fill – TBF, X-tra fil – XF, Filtek Bulk Fill Posterior – FBF, and QuixFil – QF) were tested. After the 2-step polishing procedure, the samples were divided into 2 groups: control group (K) and thermal cycling group (TC). Samples from the TC were subjected to thermal cycling according to ISO 11405 (THE-1100, SD Mechatronik GmbH). Surface geometry was evaluated by profilometry (Turbowave v. 7.36, Hommel-Etamic) and scanning electron microscope – SEM (VEGA 3, Tescan Analytics). Results: The applied thermal cycles increased the surface roughness of conventional RBCs: TEC (p = 0.000007), GD (p = 0.04), and CX (p = 0.0005). A reduction in the surface roughness of bulk-fill composites was observed in the case of materials: XF (p = 0.000003) and QF (p = 0.0002). Thermal cycling was shown to alter the surface roughness of the TEC, CX, XF, and QF materials. Conclusion: The application of thermal cycling in a water environment in accordance with the ISO 11405 standard causes the degradation of the organic matrix and the exposure of filler molecules on the surface of both conventional and high-viscosity bulk-fill composites. Some of the tested RBCs, especially those containing modern hydrophobic monomers, are less susceptible to these processes.