Effect of Arrhenius Activation Energy in MHD Micropolar Nanofluid Flow Along a Porous Stretching Sheet with Viscous Dissipation and Heat Source

IF 1 Q3 PHYSICS, MULTIDISCIPLINARY
Keshab Borah, Jadav Konch, Shyamanta Chakraborty
{"title":"Effect of Arrhenius Activation Energy in MHD Micropolar Nanofluid Flow Along a Porous Stretching Sheet with Viscous Dissipation and Heat Source","authors":"Keshab Borah, Jadav Konch, Shyamanta Chakraborty","doi":"10.26565/2312-4334-2023-4-10","DOIUrl":null,"url":null,"abstract":"A numerical study of the heat and mass transfer of a micropolar nanofluid flow over a stretching sheet embedded in a porous medium is carried out in this investigation. The main objective of this work is to investigate the influence of Arrhenius activation energy, heat source and viscous dissipation on the fluid velocity, microrotation, temperature, and concentration distribution. The equations governing the flow are transformed into ordinary differential equations using appropriate similarity transformations and solved numerically using bvp4c solver in MATLAB. Graphs are plotted to study the influences of important parameters such as magnetic parameter, porosity parameter, thermophoresis parameter, Brownian motion parameter, activation energy parameter and Lewis number on velocity, microrotation, temperature and concentration distribution. The graphical representation explores that the velocity of the liquid diminishes for increasing values of magnetic parameter, whereas the angular velocity increases with it. This study also reports that an enhancement of temperature and concentration distribution is observed for the higher values of activation energy parameter, whereas the Lewis number shows the opposite behavior. The effects of various pertinent parameters are exposed realistically on skin friction coefficient, Nusselt and Sherwood numbers via tables. A comparison with previous work is conducted, and the results show good agreement.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"29 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-4-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical study of the heat and mass transfer of a micropolar nanofluid flow over a stretching sheet embedded in a porous medium is carried out in this investigation. The main objective of this work is to investigate the influence of Arrhenius activation energy, heat source and viscous dissipation on the fluid velocity, microrotation, temperature, and concentration distribution. The equations governing the flow are transformed into ordinary differential equations using appropriate similarity transformations and solved numerically using bvp4c solver in MATLAB. Graphs are plotted to study the influences of important parameters such as magnetic parameter, porosity parameter, thermophoresis parameter, Brownian motion parameter, activation energy parameter and Lewis number on velocity, microrotation, temperature and concentration distribution. The graphical representation explores that the velocity of the liquid diminishes for increasing values of magnetic parameter, whereas the angular velocity increases with it. This study also reports that an enhancement of temperature and concentration distribution is observed for the higher values of activation energy parameter, whereas the Lewis number shows the opposite behavior. The effects of various pertinent parameters are exposed realistically on skin friction coefficient, Nusselt and Sherwood numbers via tables. A comparison with previous work is conducted, and the results show good agreement.
具有粘性耗散和热源的多孔拉伸片上的 MHD 微波纳米流体流动中阿伦尼乌斯活化能的影响
本研究对嵌入多孔介质的拉伸片上的微极性纳米流体的传热和传质进行了数值研究。这项工作的主要目的是研究阿伦尼乌斯活化能、热源和粘性耗散对流体速度、微气浮、温度和浓度分布的影响。使用适当的相似变换将控制流动的方程转换为常微分方程,并使用 MATLAB 中的 bvp4c 求解器进行数值求解。绘制了图表来研究磁性参数、孔隙率参数、热泳参数、布朗运动参数、活化能参数和路易斯数等重要参数对速度、微气浮、温度和浓度分布的影响。图表显示,液体的速度随着磁参数值的增大而减小,而角速度则随着磁参数值的增大而增大。研究还发现,活化能参数值越高,温度和浓度分布越均匀,而路易斯数则相反。各种相关参数对表皮摩擦系数、努塞尔特数和舍伍德数的影响通过表格真实地展现出来。与之前的工作进行了比较,结果显示两者具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
East European Journal of Physics
East European Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
25.00%
发文量
58
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信