Influence of silicon characteristics on the parameters of manufactured photonics cells

IF 1 Q3 PHYSICS, MULTIDISCIPLINARY
M. Kukurudziak, Volodymyr M. Lipka
{"title":"Influence of silicon characteristics on the parameters of manufactured photonics cells","authors":"M. Kukurudziak, Volodymyr M. Lipka","doi":"10.26565/2312-4334-2023-4-24","DOIUrl":null,"url":null,"abstract":"The paper investigates the influence of the electrophysical characteristics of silicon on the final parameters of photoelectronic elements using p-i-n photodiodes as an example. It has been found that photodiode samples made on the basis of silicon with a higher resistivity are more prone to the formation of inversion channels at the oxide-semiconductor interface. Also, the dark current and responsivity of such photodiodes reach saturation at a lower voltage. It has also been shown that silicon-based photodiodes with a longer lifetime of non-basic charge carriers have lower dark current values. It has been shown that products with crystallographic orientation [111] have a much lower density of surface dislocations after technological operations than in the case of silicon with orientation [100]. It was also found that materials with different crystallographic orientations have different phosphorus diffusion coefficients. It has been experimentally established that a silicon oxide film grows faster on the surface of crystallographic orientation silicon [111] than on the surface of crystallographic orientation silicon [100]. This is due to the difference in the surface density of silicon atoms inherent in different crystallographic planes.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"55 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-4-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper investigates the influence of the electrophysical characteristics of silicon on the final parameters of photoelectronic elements using p-i-n photodiodes as an example. It has been found that photodiode samples made on the basis of silicon with a higher resistivity are more prone to the formation of inversion channels at the oxide-semiconductor interface. Also, the dark current and responsivity of such photodiodes reach saturation at a lower voltage. It has also been shown that silicon-based photodiodes with a longer lifetime of non-basic charge carriers have lower dark current values. It has been shown that products with crystallographic orientation [111] have a much lower density of surface dislocations after technological operations than in the case of silicon with orientation [100]. It was also found that materials with different crystallographic orientations have different phosphorus diffusion coefficients. It has been experimentally established that a silicon oxide film grows faster on the surface of crystallographic orientation silicon [111] than on the surface of crystallographic orientation silicon [100]. This is due to the difference in the surface density of silicon atoms inherent in different crystallographic planes.
硅特性对人造光子电池参数的影响
本文以 pi-i-n 光电二极管为例,研究了硅的电物理特性对光电子元件最终参数的影响。研究发现,以电阻率较高的硅为基础制作的光电二极管样品更容易在氧化物-半导体界面上形成反转通道。此外,这种光电二极管的暗电流和响应度在较低的电压下就会达到饱和。研究还表明,非基本电荷载流子寿命较长的硅基光电二极管的暗电流值较低。研究表明,与有取向的硅相比[100],有晶体取向的产品[111]在工艺操作后的表面位错密度要低得多。研究还发现,具有不同晶体取向的材料具有不同的磷扩散系数。实验证明,氧化硅薄膜在晶体取向硅表面的生长速度[111]快于在晶体取向硅表面的生长速度[100]。这是因为不同晶面上固有的硅原子表面密度不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
East European Journal of Physics
East European Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
25.00%
发文量
58
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信