IGFNet: Illumination-Guided Fusion Network for Semantic Scene Understanding using RGB-Thermal Images

Haotian Li, Yuxiang Sun
{"title":"IGFNet: Illumination-Guided Fusion Network for Semantic Scene Understanding using RGB-Thermal Images","authors":"Haotian Li, Yuxiang Sun","doi":"10.1109/ROBIO58561.2023.10354613","DOIUrl":null,"url":null,"abstract":"Semantic scene understanding is a fundamental task for autonomous driving. It serves as a build block for many downstream tasks. Under challenging illumination conditions, thermal images can provide complementary information for RGB images. Many multi-modal fusion networks have been proposed using RGB-Thermal data for semantic scene understanding. However, current state-of-the-art methods simply use networks to fuse features on multi-modality inexplicably, rather than designing a fusion method based on the intrinsic characteristics of RGB images and thermal images. To address this issue, we propose IGFNet, an illumination-guided fusion network for RGB-Thermal semantic scene understanding, which utilizes a weight mask generated by the illumination estimation module to weight the RGB and thermal feature maps at different stages. Experimental results show that our network outperforms the state-of-the-art methods on the MFNet dataset. Our code is available at: https://github.com/lab-sun/IGFNet.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"81 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic scene understanding is a fundamental task for autonomous driving. It serves as a build block for many downstream tasks. Under challenging illumination conditions, thermal images can provide complementary information for RGB images. Many multi-modal fusion networks have been proposed using RGB-Thermal data for semantic scene understanding. However, current state-of-the-art methods simply use networks to fuse features on multi-modality inexplicably, rather than designing a fusion method based on the intrinsic characteristics of RGB images and thermal images. To address this issue, we propose IGFNet, an illumination-guided fusion network for RGB-Thermal semantic scene understanding, which utilizes a weight mask generated by the illumination estimation module to weight the RGB and thermal feature maps at different stages. Experimental results show that our network outperforms the state-of-the-art methods on the MFNet dataset. Our code is available at: https://github.com/lab-sun/IGFNet.
IGFNet:利用 RGB 热图像进行语义场景理解的光照引导融合网络
语义场景理解是自动驾驶的一项基本任务。它是许多下游任务的基础。在具有挑战性的光照条件下,热图像可以为 RGB 图像提供补充信息。许多多模态融合网络都是利用 RGB-热数据实现语义场景理解的。然而,目前最先进的方法只是简单地使用网络对多模态特征进行莫名其妙的融合,而不是根据 RGB 图像和热图像的固有特征设计融合方法。为了解决这个问题,我们提出了一种用于 RGB-热图像语义场景理解的光照引导融合网络 IGFNet,它利用光照估计模块生成的权重掩码在不同阶段对 RGB 和热图像特征图进行加权。实验结果表明,我们的网络在 MFNet 数据集上的表现优于最先进的方法。我们的代码可在以下网址获取:https://github.com/lab-sun/IGFNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信