Evaluating the Efficiency of Restricted Pseudo Likelihood Estimation in Balanced and Unbalanced Clustered Binary Data Models

Intesar N. El- Saeiti
{"title":"Evaluating the Efficiency of Restricted Pseudo Likelihood Estimation in Balanced and Unbalanced Clustered Binary Data Models","authors":"Intesar N. El- Saeiti","doi":"10.37376/sjuob.v36i2.4299","DOIUrl":null,"url":null,"abstract":"Clustered binary data analysis is a common task in various fields, such as social sciences and epidemiology. Restricted Pseudo Likelihood Estimation (PLE) is a widely used approach for analyzing clustered binary data, providing flexibility in handling complex dependencies within clusters. This study aims to evaluate the efficiency of Restricted Pseudo Likelihood Estimation in balanced and unbalanced clustered binary data models. Using simulated data, we compare the performance of PLE in balanced and unbalanced clustered binary data scenarios. We consider various factors such as the number of clusters, cluster sizes, and intra-cluster correlation. The preferred class of models for clustered binary data is the Hierarchical Generalized Linear Model (HGLM). This article compares the performance of a restricted pseudo-likelihood estimation method of the Hierarchical Generalized Linear Model (HGLM) with equal and unequal cluster sizes. Through comprehensive simulation experiments, we assess the accuracy and precision of PLE estimates in terms of parameter estimation, standard errors, and hypothesis testing. Our findings provide insights into the efficiency of Restricted Pseudo Likelihood Estimation (RPLE) in balanced and unbalanced clustered binary data models. The results highlight the advantages and limitations of PLE in different scenarios, aiding researchers in selecting appropriate modeling approaches for their specific data characteristics.  The results can guide researchers in making informed decisions regarding the selection and application of PLE in their own studies, ultimately enhancing the validity and reliability of statistical analyses in the presence of clustered binary data.","PeriodicalId":503472,"journal":{"name":"The Scientific Journal of University of Benghazi","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific Journal of University of Benghazi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37376/sjuob.v36i2.4299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustered binary data analysis is a common task in various fields, such as social sciences and epidemiology. Restricted Pseudo Likelihood Estimation (PLE) is a widely used approach for analyzing clustered binary data, providing flexibility in handling complex dependencies within clusters. This study aims to evaluate the efficiency of Restricted Pseudo Likelihood Estimation in balanced and unbalanced clustered binary data models. Using simulated data, we compare the performance of PLE in balanced and unbalanced clustered binary data scenarios. We consider various factors such as the number of clusters, cluster sizes, and intra-cluster correlation. The preferred class of models for clustered binary data is the Hierarchical Generalized Linear Model (HGLM). This article compares the performance of a restricted pseudo-likelihood estimation method of the Hierarchical Generalized Linear Model (HGLM) with equal and unequal cluster sizes. Through comprehensive simulation experiments, we assess the accuracy and precision of PLE estimates in terms of parameter estimation, standard errors, and hypothesis testing. Our findings provide insights into the efficiency of Restricted Pseudo Likelihood Estimation (RPLE) in balanced and unbalanced clustered binary data models. The results highlight the advantages and limitations of PLE in different scenarios, aiding researchers in selecting appropriate modeling approaches for their specific data characteristics.  The results can guide researchers in making informed decisions regarding the selection and application of PLE in their own studies, ultimately enhancing the validity and reliability of statistical analyses in the presence of clustered binary data.
评估均衡和非均衡聚类二元数据模型中受限伪似然估计的效率
聚类二元数据分析是社会科学和流行病学等多个领域的常见任务。受限伪似然估计法(PLE)是一种广泛应用于聚类二元数据分析的方法,能灵活处理聚类内的复杂依赖关系。本研究旨在评估限制性伪似然估计法在平衡和非平衡聚类二元数据模型中的效率。通过模拟数据,我们比较了 PLE 在平衡和不平衡聚类二进制数据情况下的性能。我们考虑了各种因素,如聚类数量、聚类大小和聚类内部相关性。聚类二元数据的首选模型是分层广义线性模型(HGLM)。本文比较了分层广义线性模型(HGLM)在聚类大小相等和不相等情况下的受限伪似然估计方法的性能。通过综合模拟实验,我们从参数估计、标准误差和假设检验等方面评估了伪似然估计的准确性和精确度。我们的研究结果为限制伪似然估计(RPLE)在平衡和不平衡聚类二元数据模型中的效率提供了启示。研究结果强调了 PLE 在不同情况下的优势和局限性,有助于研究人员根据具体数据特征选择合适的建模方法。 这些结果可以指导研究人员在自己的研究中就 PLE 的选择和应用做出明智的决定,最终提高聚类二元数据统计分析的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信