Microplastic Removal from Road Stormwater Runoff using Lab-scale Bioretention Cell

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY
Fathiya Mufidah, P. Soewondo
{"title":"Microplastic Removal from Road Stormwater Runoff using Lab-scale Bioretention Cell","authors":"Fathiya Mufidah, P. Soewondo","doi":"10.5614/j.eng.technol.sci.2023.55.5.2","DOIUrl":null,"url":null,"abstract":"Microplastic removal from stormwater runoff from roads is necessary to reduce the effect of microplastic pollution in water bodies. Bioretention is a potential technology to remove microplastics in stormwater runoff from roads. A lab-scale experiment was conducted to determine the efficiency, effect on vegetation and discharge variation, and the kinetics of microplastic removal from stormwater runoff from roads using a bioretention cell. The experiment was done using an artificial sample based on visual characterization of stormwater runoff from highways, commercial, and residential roads. The vegetations that were examined were Vetivera sp. and Hibiscus sp. The operational discharge was varied based on rainfall intensity categories. The result showed that the removal efficiency was in the range of 92.4 to 99.3% with a mean of 97.2%. Statistical analysis (α = 5%) showed that variation in vegetation and discharge had no significant effect on microplastic removal using bioretention. The first-order kinetic analysis showed that the kinetic removal constant of the bioretention with Vetivera sp., bioretention with Hibiscus sp., and bioretention without vegetation was 0.0356, 0.034, and 0.0327, respectively. These results indicate that bioretention with Hibiscus sp. removed more microplastics at greater depths than with Vetivera sp.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.5.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic removal from stormwater runoff from roads is necessary to reduce the effect of microplastic pollution in water bodies. Bioretention is a potential technology to remove microplastics in stormwater runoff from roads. A lab-scale experiment was conducted to determine the efficiency, effect on vegetation and discharge variation, and the kinetics of microplastic removal from stormwater runoff from roads using a bioretention cell. The experiment was done using an artificial sample based on visual characterization of stormwater runoff from highways, commercial, and residential roads. The vegetations that were examined were Vetivera sp. and Hibiscus sp. The operational discharge was varied based on rainfall intensity categories. The result showed that the removal efficiency was in the range of 92.4 to 99.3% with a mean of 97.2%. Statistical analysis (α = 5%) showed that variation in vegetation and discharge had no significant effect on microplastic removal using bioretention. The first-order kinetic analysis showed that the kinetic removal constant of the bioretention with Vetivera sp., bioretention with Hibiscus sp., and bioretention without vegetation was 0.0356, 0.034, and 0.0327, respectively. These results indicate that bioretention with Hibiscus sp. removed more microplastics at greater depths than with Vetivera sp.
利用实验室规模的生物滞留池去除道路雨水径流中的微塑料
要减少水体中微塑料污染的影响,就必须清除道路雨水径流中的微塑料。生物滞留是一种去除道路雨水径流中微塑料的潜在技术。为了确定生物滞留池去除道路雨水径流中微塑料的效率、对植被和排放变化的影响以及动力学,进行了一次实验室规模的实验。实验使用的人工样本是根据公路、商业和住宅区道路的雨水径流的目测特征确定的。根据降雨强度类别改变了运行排水量。结果表明,去除效率在 92.4% 到 99.3% 之间,平均值为 97.2%。统计分析(α = 5%)表明,植被和排水量的变化对生物滞留法去除微塑料没有显著影响。一阶动力学分析表明,含有香根草的生物滞留、含有木槿的生物滞留和不含植被的生物滞留的动力学去除常数分别为 0.0356、0.034 和 0.0327。这些结果表明,使用木槿的生物滞留在更深处比使用香根草的生物滞留去除更多的微塑料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信