Leveraging Large Language Models for Analysis of Student Course Feedback

Zixuan Wang, Paul Denny, Juho Leinonen, Andrew Luxton-Reilly
{"title":"Leveraging Large Language Models for Analysis of Student Course Feedback","authors":"Zixuan Wang, Paul Denny, Juho Leinonen, Andrew Luxton-Reilly","doi":"10.1145/3627217.3627221","DOIUrl":null,"url":null,"abstract":"This study investigates the use of large language models, specifically ChatGPT, to analyse the feedback from a Summative Evaluation Tool (SET) used to collect student feedback on the quality of teaching. We find that these models enhance comprehension of SET scores and the impact of context on student evaluations. This work aims to reveal hidden patterns in student evaluation data, demonstrating a positive first step towards automated, detailed analysis of student feedback.","PeriodicalId":508655,"journal":{"name":"Proceedings of the 16th Annual ACM India Compute Conference","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th Annual ACM India Compute Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627217.3627221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of large language models, specifically ChatGPT, to analyse the feedback from a Summative Evaluation Tool (SET) used to collect student feedback on the quality of teaching. We find that these models enhance comprehension of SET scores and the impact of context on student evaluations. This work aims to reveal hidden patterns in student evaluation data, demonstrating a positive first step towards automated, detailed analysis of student feedback.
利用大型语言模型分析学生课程反馈
本研究调查了大型语言模型(特别是 ChatGPT)的使用情况,以分析用于收集学生对教学质量反馈的总结性评价工具(SET)的反馈。我们发现,这些模型提高了对 SET 分数的理解能力,并增强了语境对学生评价的影响。这项工作旨在揭示学生评价数据中隐藏的模式,为自动详细分析学生反馈迈出了积极的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信