Spatial Analysis of Urban Road Traffic Accidents Using GIS

DS Munasinghe
{"title":"Spatial Analysis of Urban Road Traffic Accidents Using GIS","authors":"DS Munasinghe","doi":"10.37745/bjmas.2022.0368","DOIUrl":null,"url":null,"abstract":"Road traffic accidents are on the rise in urban areas globally, including Sri Lanka, leading to significant human and property losses. The Colombo Municipal Council (CMC) area in Sri Lanka witnesses a particularly high number of these accidents. This study aimed to analyze urban traffic accidents using GIS within complex urban networks. It employed a two-step approach, starting with a hot spot analysis based on accident times and types (fatal, non-grievous, and damage-only), using Kernel Density Estimation (KDE) and Nearest Neighbor Hierarchy (NNH) methods. Additionally, it created separate severity maps and compares the results visually, with KDE offering a comprehensive overview and NNH pinpointing high-accident areas. The KDE method was expected to benefit long-term traffic congestion reduction and safety enhancement. NNH's severity map provides immediate insights for road safety specialists. A mathematical approach involved calculating the Prediction Accuracy Index (PAI) for each method, revealing a notably higher value for NNH, making it a more suitable choice. In conclusion, this study recommended the Nearest Neighbor Hierarchy (NNH) method as superior for road safety analysis, offering important guidance for urban planning and accident prevention efforts","PeriodicalId":421703,"journal":{"name":"British Journal of Multidisciplinary and Advanced Studies","volume":"67 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Multidisciplinary and Advanced Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37745/bjmas.2022.0368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Road traffic accidents are on the rise in urban areas globally, including Sri Lanka, leading to significant human and property losses. The Colombo Municipal Council (CMC) area in Sri Lanka witnesses a particularly high number of these accidents. This study aimed to analyze urban traffic accidents using GIS within complex urban networks. It employed a two-step approach, starting with a hot spot analysis based on accident times and types (fatal, non-grievous, and damage-only), using Kernel Density Estimation (KDE) and Nearest Neighbor Hierarchy (NNH) methods. Additionally, it created separate severity maps and compares the results visually, with KDE offering a comprehensive overview and NNH pinpointing high-accident areas. The KDE method was expected to benefit long-term traffic congestion reduction and safety enhancement. NNH's severity map provides immediate insights for road safety specialists. A mathematical approach involved calculating the Prediction Accuracy Index (PAI) for each method, revealing a notably higher value for NNH, making it a more suitable choice. In conclusion, this study recommended the Nearest Neighbor Hierarchy (NNH) method as superior for road safety analysis, offering important guidance for urban planning and accident prevention efforts
利用地理信息系统对城市道路交通事故进行空间分析
在包括斯里兰卡在内的全球城市地区,道路交通事故呈上升趋势,导致重大人员和财产损失。斯里兰卡科伦坡市政委员会(CMC)地区的交通事故尤其多。本研究旨在利用地理信息系统分析复杂城市网络中的城市交通事故。研究采用了两步法,首先使用核密度估计法(KDE)和近邻层次法(NNH),根据事故时间和类型(致命、非致命和纯损害)进行热点分析。此外,它还创建了不同的严重性地图,并对结果进行了直观比较,KDE 提供了一个全面的概览,而 NNH 则精确定位了事故高发区。KDE 方法有望长期缓解交通拥堵并提高安全性。NNH 的严重程度图可为道路安全专家提供直接的见解。数学方法包括计算每种方法的预测准确度指数 (PAI),结果显示 NNH 的预测准确度指数明显更高,因此是更合适的选择。总之,本研究推荐使用近邻层次法(NNH)进行道路安全分析,为城市规划和事故预防工作提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信