P. Q. Truong, Tan Do-Duy, Van-Ca Phan, Antonino Masaracchia
{"title":"Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks","authors":"P. Q. Truong, Tan Do-Duy, Van-Ca Phan, Antonino Masaracchia","doi":"10.4108/eetinis.v10i4.4359","DOIUrl":null,"url":null,"abstract":"Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method.","PeriodicalId":502655,"journal":{"name":"EAI Endorsed Trans. Ind. Networks Intell. Syst.","volume":"42 5-6","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Ind. Networks Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i4.4359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method.