Nurse-led home-based detection of cardiac dysfunction by ultrasound: Results of the CUMIN pilot study

J. Tromp, Chenik Sarra, Bouchahda Nidhal, Ben Messaoud Mejdi, Fourat Zouari, Yoran Hummel, K. Mzoughi, S. Kraiem, Wafa Fehri, Habib Gamra, Carolyn S P Lam, Alexandre Mebazaa, Faouzi Addad
{"title":"Nurse-led home-based detection of cardiac dysfunction by ultrasound: Results of the CUMIN pilot study","authors":"J. Tromp, Chenik Sarra, Bouchahda Nidhal, Ben Messaoud Mejdi, Fourat Zouari, Yoran Hummel, K. Mzoughi, S. Kraiem, Wafa Fehri, Habib Gamra, Carolyn S P Lam, Alexandre Mebazaa, Faouzi Addad","doi":"10.1093/ehjdh/ztad079","DOIUrl":null,"url":null,"abstract":"Access to echocardiography is a significant barrier to heart failure (HF) care in many low- and middle-income countries. We hypothesised that an artificial intelligence (AI) enhanced point-of-care ultrasound (POCUS) device could enable the detection of cardiac dysfunction by nurses in Tunisia. The CUMIN study was a prospective feasibility pilot assessing the diagnostic accuracy of home-based AI-POCUS for HF conducted by novice nurses compared to conventional clinic-based transthoracic echocardiography (TTE). Seven nurses underwent a one-day training program in AI-POCUS. 94 patients without a previous HF diagnosis received home-based AI-POCUS, POC NTproBNP testing, and clinic-based TTE. The primary outcome was the sensitivity of AI-POCUS in detecting left ventricular ejection fraction (LVEF) <50% or left atrial volume index (LAVI) >34 mL/m2, using clinic-based TTE as the reference. Out of 7 nurses, 5 achieved a minimum standard to participate in the study. Out of 94 patients (60% women, median age 67), 16 (17%) had LVEF<50% or LAVI >34 mL/m2. AI-POCUS provided interpretable LVEF in 75 (80%) patients and LAVI in 64 (68%). The only significant predictor of an interpretable LVEF or LAVI proportion was the nurse operator. The sensitivity for the primary outcome was 92% (95% CI 62-99) for AI-POCUS compared to 87% (95% CI 60-98) for NT-proBNP>125 pg/mL, with AI-POCUS having a significantly higher AUC (P=0.040). The study demonstrated the feasibility of novice nurse-led home-based detection of cardiac dysfunction using AI-POCUS in HF patients, which could alleviate the burden on under-resourced healthcare systems","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Access to echocardiography is a significant barrier to heart failure (HF) care in many low- and middle-income countries. We hypothesised that an artificial intelligence (AI) enhanced point-of-care ultrasound (POCUS) device could enable the detection of cardiac dysfunction by nurses in Tunisia. The CUMIN study was a prospective feasibility pilot assessing the diagnostic accuracy of home-based AI-POCUS for HF conducted by novice nurses compared to conventional clinic-based transthoracic echocardiography (TTE). Seven nurses underwent a one-day training program in AI-POCUS. 94 patients without a previous HF diagnosis received home-based AI-POCUS, POC NTproBNP testing, and clinic-based TTE. The primary outcome was the sensitivity of AI-POCUS in detecting left ventricular ejection fraction (LVEF) <50% or left atrial volume index (LAVI) >34 mL/m2, using clinic-based TTE as the reference. Out of 7 nurses, 5 achieved a minimum standard to participate in the study. Out of 94 patients (60% women, median age 67), 16 (17%) had LVEF<50% or LAVI >34 mL/m2. AI-POCUS provided interpretable LVEF in 75 (80%) patients and LAVI in 64 (68%). The only significant predictor of an interpretable LVEF or LAVI proportion was the nurse operator. The sensitivity for the primary outcome was 92% (95% CI 62-99) for AI-POCUS compared to 87% (95% CI 60-98) for NT-proBNP>125 pg/mL, with AI-POCUS having a significantly higher AUC (P=0.040). The study demonstrated the feasibility of novice nurse-led home-based detection of cardiac dysfunction using AI-POCUS in HF patients, which could alleviate the burden on under-resourced healthcare systems
以护士为主导的超声波心脏功能障碍家庭检测:CUMIN 试点研究的结果
在许多中低收入国家,超声心动图检查是心力衰竭(HF)治疗的一大障碍。我们假设,在突尼斯,人工智能(AI)增强型护理点超声波(POCUS)设备可以帮助护士检测心功能不全。 CUMIN 研究是一项前瞻性可行性试点研究,旨在评估由新手护士进行的家庭人工智能超声心动图(AI-POCUS)与传统的门诊经胸超声心动图(TTE)相比,对心房颤动的诊断准确性。七名护士接受了为期一天的 AI-POCUS 培训。94 名既往未确诊为高血压的患者接受了家庭 AI-POCUS、POC NTproBNP 检测和门诊 TTE。主要结果是 AI-POCUS 检测左心室射血分数 (LVEF) 34 mL/m2 的灵敏度,以临床 TTE 作为参考。 在 7 名护士中,有 5 人达到了参与研究的最低标准。在 94 名患者(60% 为女性,中位年龄为 67 岁)中,16 人(17%)的 LVEF 为 34 mL/m2。75 名(80%)患者的 AI-POCUS 提供了可解释的 LVEF,64 名(68%)患者的 LAVI 提供了可解释的 LVEF。可解释 LVEF 或 LAVI 比例的唯一重要预测因素是护士操作员。AI-POCUS 对主要结果的敏感性为 92%(95% CI 62-99),而 NT-proBNP>125 pg/mL 为 87%(95% CI 60-98),AI-POCUS 的 AUC 明显更高(P=0.040)。 该研究证明了在新手护士指导下使用 AI-POCUS 在家中检测高血压患者心功能不全的可行性,这可以减轻资源不足的医疗系统的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信