Margret Westerkamp, Jakob Roth, Philipp Frank, W. Handley, T. Enßlin
{"title":"Inferring Evidence from Nested Sampling Data via Information Field Theory","authors":"Margret Westerkamp, Jakob Roth, Philipp Frank, W. Handley, T. Enßlin","doi":"10.3390/psf2023009019","DOIUrl":null,"url":null,"abstract":"Nested sampling provides an estimate of the evidence of a Bayesian inference problem via probing the likelihood as a function of the enclosed prior volume. However, the lack of precise values of the enclosed prior mass of the samples introduces probing noise, which can hamper high-accuracy determinations of the evidence values as estimated from the likelihood-prior-volume function. We introduce an approach based on information field theory, a framework for non-parametric function reconstruction from data, that infers the likelihood-prior-volume function by exploiting its smoothness and thereby aims to improve the evidence calculation. Our method provides posterior samples of the likelihood-prior-volume function that translate into a quantification of the remaining sampling noise for the evidence estimate, or for any other quantity derived from the likelihood-prior-volume function.","PeriodicalId":506244,"journal":{"name":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","volume":"50 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psf2023009019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nested sampling provides an estimate of the evidence of a Bayesian inference problem via probing the likelihood as a function of the enclosed prior volume. However, the lack of precise values of the enclosed prior mass of the samples introduces probing noise, which can hamper high-accuracy determinations of the evidence values as estimated from the likelihood-prior-volume function. We introduce an approach based on information field theory, a framework for non-parametric function reconstruction from data, that infers the likelihood-prior-volume function by exploiting its smoothness and thereby aims to improve the evidence calculation. Our method provides posterior samples of the likelihood-prior-volume function that translate into a quantification of the remaining sampling noise for the evidence estimate, or for any other quantity derived from the likelihood-prior-volume function.