Yuchen Wang, Fukang Lv, Fengxian Du, Shuhao Fan, Wenjuan Wu, Cuixia Dai
{"title":"Enhancement of multimodal imaging of rabbit eyes using optical clearing agents","authors":"Yuchen Wang, Fukang Lv, Fengxian Du, Shuhao Fan, Wenjuan Wu, Cuixia Dai","doi":"10.1117/12.3006794","DOIUrl":null,"url":null,"abstract":"The imaging depth of conventional Optical Coherence Tomography (OCT) is limited by high scattering of biological tissues, while the signal intensity of deep tissue imaged by Photoacoustic Microscopy (PAM) is also affected by the weak light excitation of biological tissues. In this paper, glycerol solution was used as the optical clearing agent (OCA) to enhance tissue transparency and reduce light attenuation during deep tissue imaging. We performed optical clearing treatment on the anterior and posterior segments of rabbit eyes by topically applying glycerol to the conjunctival opening and through posterior injection, respectively. Then the anterior and posterior segments of rabbit eyes were imaged using the PAM and OCT systems. The results demonstrate that the optical transparency alteration of the anterior and posterior segments of rabbit eyes changes the tissue refractive index, increases the signal intensity of OCT and PAM, and enhances the imaging depth of both OCT and PAM. Consequently, the optical clearing agent provides a powerful tool for ophthalmic research and early diagnosis of ocular diseases, and also expands the imaging applications of OCT and PAM.","PeriodicalId":505225,"journal":{"name":"Advanced Imaging and Information Processing","volume":"20 2","pages":"129420A - 129420A-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The imaging depth of conventional Optical Coherence Tomography (OCT) is limited by high scattering of biological tissues, while the signal intensity of deep tissue imaged by Photoacoustic Microscopy (PAM) is also affected by the weak light excitation of biological tissues. In this paper, glycerol solution was used as the optical clearing agent (OCA) to enhance tissue transparency and reduce light attenuation during deep tissue imaging. We performed optical clearing treatment on the anterior and posterior segments of rabbit eyes by topically applying glycerol to the conjunctival opening and through posterior injection, respectively. Then the anterior and posterior segments of rabbit eyes were imaged using the PAM and OCT systems. The results demonstrate that the optical transparency alteration of the anterior and posterior segments of rabbit eyes changes the tissue refractive index, increases the signal intensity of OCT and PAM, and enhances the imaging depth of both OCT and PAM. Consequently, the optical clearing agent provides a powerful tool for ophthalmic research and early diagnosis of ocular diseases, and also expands the imaging applications of OCT and PAM.
传统光学相干断层扫描(OCT)的成像深度受到生物组织高散射的限制,而光声显微镜(PAM)成像的深部组织信号强度也受到生物组织弱光激发的影响。本文使用甘油溶液作为光学清除剂(OCA),以提高组织透明度并减少深部组织成像过程中的光衰减。我们通过在结膜开口处局部涂抹甘油和后部注射甘油,分别对兔眼的前部和后部进行了光学清除处理。然后使用 PAM 和 OCT 系统对兔眼前后节段进行成像。结果表明,兔眼前后节段的光学透明度改变会改变组织折射率,增加 OCT 和 PAM 的信号强度,并增强 OCT 和 PAM 的成像深度。因此,光学透明剂为眼科研究和眼科疾病的早期诊断提供了强有力的工具,同时也拓展了 OCT 和 PAM 的成像应用。