Numerical computational approach for 6th order boundary value problems

Folasade Ajimot Adebisi, C. Ishola, O. Uwaheren, Kamilu Adedokun Okunola, M. T. Raji, Wasiu Oseni
{"title":"Numerical computational approach for 6th order boundary value problems","authors":"Folasade Ajimot Adebisi, C. Ishola, O. Uwaheren, Kamilu Adedokun Okunola, M. T. Raji, Wasiu Oseni","doi":"10.21580/jnsmr.2023.9.1.14907","DOIUrl":null,"url":null,"abstract":"This study introduces numerical computational methods that employ fourth-kind Chebyshev polynomials as basis functions to solve sixth-order boundary value problems. The approach transforms the BVPs into a system of linear algebraic equations, expressed as unknown Chebyshev coefficients, which are subsequently solved through matrix inversion. Numerical experiments were conducted to validate the accuracy and efficiency of the technique, demonstrating its simplicity and superiority over existing solutions. The graphical representation of the method's solution is also presented.","PeriodicalId":191192,"journal":{"name":"Journal of Natural Sciences and Mathematics Research","volume":"36 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences and Mathematics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/jnsmr.2023.9.1.14907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces numerical computational methods that employ fourth-kind Chebyshev polynomials as basis functions to solve sixth-order boundary value problems. The approach transforms the BVPs into a system of linear algebraic equations, expressed as unknown Chebyshev coefficients, which are subsequently solved through matrix inversion. Numerical experiments were conducted to validate the accuracy and efficiency of the technique, demonstrating its simplicity and superiority over existing solutions. The graphical representation of the method's solution is also presented.
6 阶边界值问题的数值计算方法
本研究介绍了采用第四类切比雪夫多项式作为基函数求解六阶边界值问题的数值计算方法。该方法将 BVP 转化为线性代数方程组,以未知的切比雪夫系数表示,随后通过矩阵反演求解。为了验证该技术的准确性和效率,我们进行了数值实验,证明了它的简便性和优于现有解决方案的特性。此外,还介绍了该方法求解的图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信