Modifikasi Garis Singgung Untuk Mempercepat Iterasi Pada Metode Newton Raphson

Maxrizal Maxrizal
{"title":"Modifikasi Garis Singgung Untuk Mempercepat Iterasi Pada Metode Newton Raphson","authors":"Maxrizal Maxrizal","doi":"10.37905/euler.v11i2.23094","DOIUrl":null,"url":null,"abstract":"The Newton-Raphson method is one of the methods to find solutions or roots of nonlinear equations. This method converges faster than other methods and is more effective in finding doubles. In this study, it will be shown that the Newton-Raphson modification uses modifications to the tangent equation. The results show that for every nth iteration, the speed difference of Newton Raphson modification is __. Furthermore, the convergence of Newton Raphson is __, and for Newton Raphson modification is __.","PeriodicalId":504964,"journal":{"name":"Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37905/euler.v11i2.23094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Newton-Raphson method is one of the methods to find solutions or roots of nonlinear equations. This method converges faster than other methods and is more effective in finding doubles. In this study, it will be shown that the Newton-Raphson modification uses modifications to the tangent equation. The results show that for every nth iteration, the speed difference of Newton Raphson modification is __. Furthermore, the convergence of Newton Raphson is __, and for Newton Raphson modification is __.
修改切线以加快牛顿-拉斐森方法的迭代速度
牛顿-拉夫逊法是寻找非线性方程的解或根的方法之一。与其他方法相比,这种方法收敛速度更快,而且在寻找倍值方面更为有效。本研究将证明牛顿-拉夫逊修正法使用了对正切方程的修正。结果表明,每迭代 n 次,牛顿-拉斐尔森修正法的速度差为__。此外,牛顿-拉斐尔森的收敛性是__,牛顿-拉斐尔森修正法的收敛性是__。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信