{"title":"An Improved Decoupled Finite Element Analysis Method of Ultra-Large Offshore Wind Turbine Subjected to Combined Wind-wave Actions","authors":"D. Lu, Wenhua Wang, Xin Li","doi":"10.1115/1.4064298","DOIUrl":null,"url":null,"abstract":"Owing to the simplification of the wind turbine, it is difficult to accurately simulate the interaction between the rotor system and the supporting structure using decoupling finite element method. Therefore, when using this method for safety assessment and dynamic response research of the offshore wind turbine (OWT), there is a deviation between the simulation result and the real response of the OWT. In this study, an improved decoupled finite element analysis method is proposed based on a theoretical derivation. A simplified finite element model of a 10 MW jacket OWT with an equivalent substructure was established, and the dynamic response of the OWT under wind and waves was studied. By comparing the results of the fully coupled analysis method and the traditional finite element method, the applicability of the traditional finite element analysis method to the dynamic analysis of an OWT under typical winds and waves is discussed. The limitations of using the traditional finite element method to study or evaluate an OWT complex dynamic system were revealed, and the effectiveness and applicability of the improved method proposed in this study were qualitatively and quantitatively verified. Subsequently, based on the proposed improved decoupled finite element analysis method, a numerical calculation corresponding to a fully coupled test was performed. Compared with the numerical results obtained by the traditional finite element method, the improved decoupled finite element method proposed in this study obtained more consistent results with the fully coupled test.","PeriodicalId":509714,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering","volume":"28 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the simplification of the wind turbine, it is difficult to accurately simulate the interaction between the rotor system and the supporting structure using decoupling finite element method. Therefore, when using this method for safety assessment and dynamic response research of the offshore wind turbine (OWT), there is a deviation between the simulation result and the real response of the OWT. In this study, an improved decoupled finite element analysis method is proposed based on a theoretical derivation. A simplified finite element model of a 10 MW jacket OWT with an equivalent substructure was established, and the dynamic response of the OWT under wind and waves was studied. By comparing the results of the fully coupled analysis method and the traditional finite element method, the applicability of the traditional finite element analysis method to the dynamic analysis of an OWT under typical winds and waves is discussed. The limitations of using the traditional finite element method to study or evaluate an OWT complex dynamic system were revealed, and the effectiveness and applicability of the improved method proposed in this study were qualitatively and quantitatively verified. Subsequently, based on the proposed improved decoupled finite element analysis method, a numerical calculation corresponding to a fully coupled test was performed. Compared with the numerical results obtained by the traditional finite element method, the improved decoupled finite element method proposed in this study obtained more consistent results with the fully coupled test.