Continuous Transport of a Nanoparticle on a Solid Surface

Teng Zhang, Jiantao Leng, Tienchong Chang
{"title":"Continuous Transport of a Nanoparticle on a Solid Surface","authors":"Teng Zhang, Jiantao Leng, Tienchong Chang","doi":"10.1115/1.4064269","DOIUrl":null,"url":null,"abstract":"Long-distance transport of a nanoparticle on a solid surface remains a challenge in nanotechnology. Here we design a nanoscale motor device for continuously transporting a nanoparticle on a beam surface. The device is composed of repeated units of clamped beams on which a harmonic excitation is applied to induce a gradient in atomic density on their surface, and such atomic density consequently creates a driving force on the nanoparticle attached on the device surface. The design requirements that should be satisfied by the device attributes are analytically derived, and the effect of the device attributes on the device transport performance is discussed. In addition, molecular dynamics simulations for a typical device of a graphene sheet transported on a silver beam are conducted to verify the analytical results. The proposed design provides a starting point for continuously transporting a nanoobject on a solid surface, and has a great potential in various applications such as nanomotors and molecular assembly lines.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"49 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-distance transport of a nanoparticle on a solid surface remains a challenge in nanotechnology. Here we design a nanoscale motor device for continuously transporting a nanoparticle on a beam surface. The device is composed of repeated units of clamped beams on which a harmonic excitation is applied to induce a gradient in atomic density on their surface, and such atomic density consequently creates a driving force on the nanoparticle attached on the device surface. The design requirements that should be satisfied by the device attributes are analytically derived, and the effect of the device attributes on the device transport performance is discussed. In addition, molecular dynamics simulations for a typical device of a graphene sheet transported on a silver beam are conducted to verify the analytical results. The proposed design provides a starting point for continuously transporting a nanoobject on a solid surface, and has a great potential in various applications such as nanomotors and molecular assembly lines.
纳米粒子在固体表面的连续传输
纳米粒子在固体表面的长距离传输仍然是纳米技术中的一项挑战。在这里,我们设计了一种纳米级电机装置,用于在横梁表面连续传输纳米粒子。该装置由重复单元的夹持梁组成,在这些梁上施加谐波激励,以在其表面引起原子密度梯度,这种原子密度会对附着在装置表面的纳米粒子产生驱动力。通过分析得出了器件属性应满足的设计要求,并讨论了器件属性对器件传输性能的影响。此外,还对在银梁上传输石墨烯薄片的典型器件进行了分子动力学模拟,以验证分析结果。所提出的设计为在固体表面连续传输纳米物体提供了一个起点,在纳米发动机和分子装配线等各种应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信