General Zagreb indices of composite graphs

Ahmed Ayache, Ivan Gutman, A. Alameri, Abdullatif Ghallab
{"title":"General Zagreb indices of composite graphs","authors":"Ahmed Ayache, Ivan Gutman, A. Alameri, Abdullatif Ghallab","doi":"10.47443/ejm.2023.048","DOIUrl":null,"url":null,"abstract":"The first and second general Zagreb indices, M α 1 and M α 2 , are the sum of the terms δ ( u ) α + δ ( v ) α and δ ( u ) α · δ ( v ) α , respectively, over all pairs of adjacent vertices u, v of a graph, where δ ( x ) is the degree of the vertex x , and α is a real number. For α = 1 , M α 1 and M α 2 are equal to the ordinary first and second Zagreb indices. For some other values of α , M α 1 and M α 2 reduce to a variety of other, earlier considered, topological indices. In this paper, we establish expressions for M α 1 and M α 2 for several types of composite graphs, and give examples pointing at possible applications of these expressions.","PeriodicalId":503196,"journal":{"name":"Electronic Journal of Mathematics","volume":"47 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/ejm.2023.048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first and second general Zagreb indices, M α 1 and M α 2 , are the sum of the terms δ ( u ) α + δ ( v ) α and δ ( u ) α · δ ( v ) α , respectively, over all pairs of adjacent vertices u, v of a graph, where δ ( x ) is the degree of the vertex x , and α is a real number. For α = 1 , M α 1 and M α 2 are equal to the ordinary first and second Zagreb indices. For some other values of α , M α 1 and M α 2 reduce to a variety of other, earlier considered, topological indices. In this paper, we establish expressions for M α 1 and M α 2 for several types of composite graphs, and give examples pointing at possible applications of these expressions.
复合图形的一般萨格勒布指数
第一个和第二个一般萨格勒布指数,即 M α 1 和 M α 2,分别是图中所有相邻顶点 u、v 对的项δ ( u ) α + δ ( v ) α 和 δ ( u ) α - δ ( v ) α 的和,其中δ ( x ) 是顶点 x 的度数,α 是实数。当 α = 1 时,M α 1 和 M α 2 等于普通的第一和第二萨格勒布指数。对于其他一些 α 值,M α 1 和 M α 2 则简化为其他各种拓扑指数,这些拓扑指数早先已被考虑过。在本文中,我们为几种类型的复合图建立了 M α 1 和 M α 2 的表达式,并举例说明了这些表达式的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信