Zhihan Zhang, Christiana Wang, Ziyin Zhao, Ziyue Yi, Arda Durmaz, Jennifer S. Yu, G. Bebek
{"title":"nSEA: n-Node Subnetwork Enumeration Algorithm Identifies Lower Grade Glioma Subtypes with Altered Subnetworks and Distinct Prognostics.","authors":"Zhihan Zhang, Christiana Wang, Ziyin Zhao, Ziyue Yi, Arda Durmaz, Jennifer S. Yu, G. Bebek","doi":"10.1142/9789811286421_0040","DOIUrl":null,"url":null,"abstract":"Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"43 10","pages":"521-533"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811286421_0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.