nSEA: n-Node Subnetwork Enumeration Algorithm Identifies Lower Grade Glioma Subtypes with Altered Subnetworks and Distinct Prognostics.

Q2 Computer Science
Zhihan Zhang, Christiana Wang, Ziyin Zhao, Ziyue Yi, Arda Durmaz, Jennifer S. Yu, G. Bebek
{"title":"nSEA: n-Node Subnetwork Enumeration Algorithm Identifies Lower Grade Glioma Subtypes with Altered Subnetworks and Distinct Prognostics.","authors":"Zhihan Zhang, Christiana Wang, Ziyin Zhao, Ziyue Yi, Arda Durmaz, Jennifer S. Yu, G. Bebek","doi":"10.1142/9789811286421_0040","DOIUrl":null,"url":null,"abstract":"Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"43 10","pages":"521-533"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811286421_0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.
nSEA:n节点子网络枚举算法可识别具有改变的子网络和不同预后的低级别胶质瘤亚型。
分子特征描述的进展重塑了我们对低级别胶质瘤(LGG)亚型的认识,强调了超越组织学进行综合分类的必要性。利用这一点,我们提出了一种新方法--基于网络的子网络枚举和分析(nSEA)--来根据失调的分子通路识别不同的 LGG 患者群体。利用来自 516 名患者的基因表达谱和蛋白-蛋白相互作用网络,我们生成了 2,500 万个子网络。通过自下而上的无监督方法,我们筛选出 92 个子网络,将 LGG 患者分为五组。值得注意的是,一个缺乏表皮生长因子受体(EGFR)、NF1和PTEN突变的新LGG患者组出现了,这是一个以前未被发现的患者亚组,具有独特的临床特征和亚网络状态。在一个独立数据集上对患者分组进行的验证证明了我们的方法的稳健性,并揭示了不同患者群体的一致生存特征。这项研究提供了一种全面的 LGG 分子分类方法,提供了超越传统遗传标记的见解。通过将网络分析与患者聚类相结合,我们揭示了一个以前被忽视的患者亚群,并对预后和治疗策略产生了潜在影响。我们的方法揭示了驱动基因的协同作用,并强调了已识别子网络的生物学相关性。我们的发现对胶质瘤研究具有广泛的意义,为进一步研究 LGG 亚型的机理基础及其临床意义铺平了道路:源代码和补充数据见 https://github.com/bebeklab/nSEA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信