Yuan Zhang, Huan Tang, Zhuoyuan Shi, Renxian Li, Bing Wei, Bing Yan, I. Minin, O. Minin
{"title":"Photonic hooks generated by a rotating dielectric sphere","authors":"Yuan Zhang, Huan Tang, Zhuoyuan Shi, Renxian Li, Bing Wei, Bing Yan, I. Minin, O. Minin","doi":"10.1117/12.3007550","DOIUrl":null,"url":null,"abstract":"This paper studies the photonic hooks (PH) generated by the interaction of a dielectric sphere rotating at a certain angular velocity with a plane wave. Based on the instantaneous static frame theory and the partial-wave series expansion method in spherical coordinates, with the help of the separated variable method, we obtain the analytical solutions for the internal and external electric fields of a homogeneous isotropic dielectric sphere rotating around the z-axis irradiated by a plane wave of arbitrary direction. This article focuses on the effect of size parameters (ka), relative refractive index (m1), and rotational dimensionless parameters 𝛾 on PH. The PH produced by this non-reciprocal system can be used not only for trapping off-axis particles, but also has promising applications in low-loss waveguiding, subdiffraction-resolution nanopatterning, and nanolithography.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"48 ","pages":"129610A - 129610A-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the photonic hooks (PH) generated by the interaction of a dielectric sphere rotating at a certain angular velocity with a plane wave. Based on the instantaneous static frame theory and the partial-wave series expansion method in spherical coordinates, with the help of the separated variable method, we obtain the analytical solutions for the internal and external electric fields of a homogeneous isotropic dielectric sphere rotating around the z-axis irradiated by a plane wave of arbitrary direction. This article focuses on the effect of size parameters (ka), relative refractive index (m1), and rotational dimensionless parameters 𝛾 on PH. The PH produced by this non-reciprocal system can be used not only for trapping off-axis particles, but also has promising applications in low-loss waveguiding, subdiffraction-resolution nanopatterning, and nanolithography.