Gradient Pattern Analysis of Coupled Map Lattices: Insights into Transient and Long-Term Behaviors

R. Sautter, Reinaldo R. Rosa, Luan O. Baraúna
{"title":"Gradient Pattern Analysis of Coupled Map Lattices: Insights into Transient and Long-Term Behaviors","authors":"R. Sautter, Reinaldo R. Rosa, Luan O. Baraúna","doi":"10.5540/03.2023.010.01.0058","DOIUrl":null,"url":null,"abstract":". Gradient Pattern Analysis (GPA) is a useful technique for analyzing the dynamics of nonlinear 2D-spatiotemporal systems, which is based on the gradient symmetry-breaking properties of a matrix snapshot sequence. GPA has found numerous applications in dynamic systems, particularly in studying logistic Coupled Map Lattices (CMLs) and Swift-Hohenberg amplitude equations. In this work, we propose a new mathematical operation related to the first gradient moment ( G 1 ) defined by the GPA theory. The performance of this new measure is evaluated by applying it to two chaotic CML models (Logistic and Shobu-Ose-Mori). The GPA using the new parameter ( G 1 ) provides a more accurate analysis, allowing the identification of conditions that partially break the gradient symmetry over time. Based on the GPA measurements ( G 1 , G 2 and G 3 ), including a combined analysis with the chaotic parameters, our results demonstrate the potential to analyze chaotic spatiotemporal systems improving our understanding of their underlying dynamics.","PeriodicalId":274912,"journal":{"name":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","volume":"36 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2023.010.01.0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Gradient Pattern Analysis (GPA) is a useful technique for analyzing the dynamics of nonlinear 2D-spatiotemporal systems, which is based on the gradient symmetry-breaking properties of a matrix snapshot sequence. GPA has found numerous applications in dynamic systems, particularly in studying logistic Coupled Map Lattices (CMLs) and Swift-Hohenberg amplitude equations. In this work, we propose a new mathematical operation related to the first gradient moment ( G 1 ) defined by the GPA theory. The performance of this new measure is evaluated by applying it to two chaotic CML models (Logistic and Shobu-Ose-Mori). The GPA using the new parameter ( G 1 ) provides a more accurate analysis, allowing the identification of conditions that partially break the gradient symmetry over time. Based on the GPA measurements ( G 1 , G 2 and G 3 ), including a combined analysis with the chaotic parameters, our results demonstrate the potential to analyze chaotic spatiotemporal systems improving our understanding of their underlying dynamics.
耦合地图网格的梯度模式分析:洞察瞬态和长期行为
.梯度模式分析(GPA)是一种分析非线性二维时空系统动态的有用技术,它基于矩阵快照序列的梯度对称破缺特性。GPA 在动态系统中应用广泛,尤其是在研究逻辑耦合图格(CML)和斯威夫特-霍恩伯格振幅方程时。在这项工作中,我们提出了一种与 GPA 理论定义的第一梯度矩 ( G 1 ) 相关的新数学运算。通过将其应用于两个混沌 CML 模型(Logistic 和 Shobu-Ose-Mori),对这一新方法的性能进行了评估。使用新参数 ( G 1 ) 的 GPA 提供了更精确的分析,可以识别随时间部分打破梯度对称性的条件。基于 GPA 测量(G 1、G 2 和 G 3),包括与混沌参数的综合分析,我们的结果证明了分析混沌时空系统的潜力,从而提高了我们对其基本动态的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信